Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2217-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-2217-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez
CORRESPONDING AUTHOR
Fraunhofer Institute for Wind Energy Systems IWES, Am Seedeich 45, 27572, Bremerhaven, Germany
Warren Watson
Fraunhofer Institute for Wind Energy Systems IWES, Am Seedeich 45, 27572, Bremerhaven, Germany
Julia Gottschall
Fraunhofer Institute for Wind Energy Systems IWES, Am Seedeich 45, 27572, Bremerhaven, Germany
Related authors
No articles found.
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45, https://doi.org/10.5194/wes-2025-45, 2025
Revised manuscript under review for WES
Short summary
Short summary
In this study, we compare turbulence intensity measurements from two buoy-mounted wind lidars with data from a fixed lidar and a meteorological mast. Turbulence intensity is essential for understanding wind conditions but is often overestimated by floating systems due to wave motion. We applied a physics-based compensation to reduce these effects. Our findings show that motion compensation significantly improves accuracy, making floating lidar systems suitable for offshore wind site assessments.
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025, https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Cited articles
Arora, J. S.: Chapter 11 – More on Numerical Methods for Unconstrained Optimum Design, in: Introduction to Optimum Design, fourth edition, edited by Arora, J. S., Academic Press, Boston, https://doi.org/10.1016/B978-0-12-800806-5.00011-1, pp. 455–509, 2017. . a
Beltran, J., Cosculluela, L., Pueyo, C., and Melero, J.: Comparison of measure-correlate-predict methods in wind resource assessments, European Wind Energy Conference and Exhibition 2010, Warsaw, Poland, 20–23 April 2010, EWEC 2010, 5, https://www.researchgate.net/publication/266242232_Comparison_of_measure-correlate-predict_methods_in_wind_resource_assessments (last access: 1 August 2023), 2010. a
Cover, T. and Hart, P.: Nearest neighbor pattern classification, IEEE T. Inform. Theory, 13, 21–27, https://doi.org/10.1109/TIT.1967.1053964, 1967. a
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a
Hanslian, D.: Analysis of wind measurement results. Dissertation thesis, supervisor Kalvová, Jaroslava, Prague, Czech Republic: Charles University, Faculty of Mathematics and Physics, Department of Atmospheric Physics, http://hdl.handle.net/20.500.11956/68952 (last access: 24 November 2024), 2014. a, b, c, d, e, f, g, h, i
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
King, C. and Hurley, B.: The SpeedSort, DynaSort and Scatter Wind Correlation Methods, Wind Engineering, 29, 217–242, https://doi.org/10.1260/030952405774354868, 2005. a
Landberg, L.: The Wind Profile, chap. 4, pp. 67–93, John Wiley and Sons, Ltd, https://doi.org/10.1002/9781118913451.ch4, 2015. a
Leiding, T., Tinz, B., Gates, L., Rosenhagen, G., Herklotz, K., Senet, C., Outzen, O., Lindenthal, A., Neumann, T., Frühman, R., Wilts, F., Bégué, F., Schwenk, P., Stein, D., Bastigkeit, Ilona nd Lange, B., Hagemann, S., Müller, S., and Schwabe, J.: Standardisierung und vergleichende Analyse der meteorologischen FINO-Messdaten (FINO123), Technical Report – available online, Final Report – FINOWind Research Project, Deutscher Wetterdienst (DWD), https://www.dwd.de/DE/forschung/projekte/fino_wind/fino_wind_node.html (last access: 2 March 2023), 2012. a, b
Met Office: Cartopy: a cartographic python library with a Matplotlib interface, Met Office, Exeter, Devon, https://scitools.org.uk/cartopy (last access: 24 November 2024), 2010–2015. a
Meyer, P. J. and Gottschall, J.: How do NEWA and ERA5 compare for assessing offshore wind resources and wind farm siting conditions?, J. Phys.-Conf. Ser., 2151, 012009, https://doi.org/10.1088/1742-6596/2151/1/012009, 2022. a, b, c
OWA: Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology, Tech.rep., The Carbon Trust, https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/documents/resource/public/Roadmap%20for%20Commercial%20Acceptance%20of%20Floating%20LiDAR%20REPORT.pdf (last access: 15 September 2023), 2018. a
Pappas, C., Papalexiou, S., and Koutsoyiannis, D.: A quick gap filling of missing hydrometeorological data, J. Geophys. Res.-Atmos., 119, 9290–9300, https://doi.org/10.1127/metz/2018/0908, 2014. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-Learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.48550/arXiv.1201.0490, 2011. a
Poveda, J. M., Wouters, D., and Nederland, S.: Wind measurements at meteorological mast IJmuiden, Tech. rep., ECN – Energy Center of the Netherlands, https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--14-058 (last accessed: 1 February 2023), 2015. a
Pulo, A., Sargin, O., Schmidt, S., Schlez, W., and Stoelinga, M.: Ten noorden van de Waddeneilanden Wind Farm Zone – Wind Resource Assessment, Tech. rep., Netherlands Enterprise Agency, https://offshorewind.rvo.nl/file/download/50c6a6f8-5f01-41a8-ad0a-702101e4aa49/tnw_22020706_guidehouse_wra_update-june-2022.pdf (last access: 3 September 2023), 2021. a
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich, S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M. andSiefert, M., Steffen, J., Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske, J.: Powering the 21st century by wind energy–Options, facts, figures, Appl. Phys. Rev., 6, 031303, https://doi.org/10.1063/1.5089877, 2017. a
Rouholahnejad, F., Santos, P., Hung, L.-Y., and Gottschall, J.: Machine learning for predicting offshore vertical wind profiles, J. Phys.-Conf. Ser., 2626, 012023, https://doi.org/10.1088/1742-6596/2626/1/012023, 2023. a
Schwegmann, S., Faulhaber, J., Pfaffel, S., Yu, Z., Dörenkämper, M., Kersting, K., and Gottschall, J.: Enabling Virtual Met Masts for wind energy applications through machine learning-methods, Energy and AI, 11, 100209, https://doi.org/10.1016/j.egyai.2022.100209, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect...
Altmetrics
Final-revised paper
Preprint