Articles | Volume 9, issue 11
https://doi.org/10.5194/wes-9-2217-2024
https://doi.org/10.5194/wes-9-2217-2024
Research article
 | 
27 Nov 2024
Research article |  | 27 Nov 2024

Understanding the impact of data gaps on long-term offshore wind resource estimates

Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall

Related authors

The rotor as a sensor – observing shear and veer from the operational data of a large wind turbine
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024,https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11,https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
Characterization of Local Wind Profiles: A Random Forest Approach for Enhanced Wind Profile Extrapolation
Farkhondeh Rouholahnejad and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-178,https://doi.org/10.5194/wes-2023-178, 2024
Revised manuscript accepted for WES
Short summary
Quantification and correction of motion influence for nacelle-based lidar systems on floating wind turbines
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023,https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Evaluation of low-level jets in the southern Baltic Sea: a comparison between ship-based lidar observational data and numerical models
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022,https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024,https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary
Experimental evaluation of wind turbine wake turbulence impacts on a general aviation aircraft
Jonathan D. Rogers
Wind Energ. Sci., 9, 1849–1868, https://doi.org/10.5194/wes-9-1849-2024,https://doi.org/10.5194/wes-9-1849-2024, 2024
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka Georgieva Yankova, and Vasiliki Mallini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-108,https://doi.org/10.5194/wes-2024-108, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Arora, J. S.: Chapter 11 – More on Numerical Methods for Unconstrained Optimum Design, in: Introduction to Optimum Design, fourth edition, edited by Arora, J. S., Academic Press, Boston, https://doi.org/10.1016/B978-0-12-800806-5.00011-1, pp. 455–509, 2017. . a
Beltran, J., Cosculluela, L., Pueyo, C., and Melero, J.: Comparison of measure-correlate-predict methods in wind resource assessments, European Wind Energy Conference and Exhibition 2010, Warsaw, Poland, 20–23 April 2010, EWEC 2010, 5, https://www.researchgate.net/publication/266242232_Comparison_of_measure-correlate-predict_methods_in_wind_resource_assessments (last access: 1 August 2023), 2010. a
Borujeni, M. S., Dideban, A., and Foroud, A. A.: Reconstructing long-term wind speed data based on measure correlate predict method for micro-grid planning, J. Amb. Intel. Hum. Comp., 12, 10183–10195, https://api.semanticscholar.org/CorpusID:234309341 (last access: 21 November 2023), 2021. a, b
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renew. Sust. Energ. Rev., 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013. a, b, c, d, e, f, g
Cover, T. and Hart, P.: Nearest neighbor pattern classification, IEEE T. Inform. Theory, 13, 21–27, https://doi.org/10.1109/TIT.1967.1053964, 1967. a
Download
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Altmetrics
Final-revised paper
Preprint