Articles | Volume 9, issue 3
https://doi.org/10.5194/wes-9-495-2024
https://doi.org/10.5194/wes-9-495-2024
Research article
 | 
04 Mar 2024
Research article |  | 04 Mar 2024

Measurement-driven large-eddy simulations of a diurnal cycle during a wake-steering field campaign

Eliot Quon

Related authors

Dries Allaerts, 1989–2024
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024,https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024,https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023,https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Investigations of correlation and coherence in turbulence from a large-eddy simulation
Regis Thedin, Eliot Quon, Matthew Churchfield, and Paul Veers
Wind Energ. Sci., 8, 487–502, https://doi.org/10.5194/wes-8-487-2023,https://doi.org/10.5194/wes-8-487-2023, 2023
Short summary
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021,https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025,https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025,https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Swell impacts on an offshore wind farm in stable boundary layer: wake flow and energy budget analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci., 10, 1101–1122, https://doi.org/10.5194/wes-10-1101-2025,https://doi.org/10.5194/wes-10-1101-2025, 2025
Short summary
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025,https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary

Cited articles

Abbas, N., Zalkind, D., and Mudafort, R.: NREL's Reference OpenSource Controller (ROSCO) toolbox for wind turbine applications, version 2.0.2, GitHub [code], https://github.com/NREL/ROSCO (last access: 7 July 2020), 2020. a
Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A Reference Open-Source Controller for Fixed and Floating Offshore Wind Turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake Flow in a Wind Farm during a Diurnal Cycle, J. Turbul., 17, 420–441, https://doi.org/10.1080/14685248.2015.1127379, 2016. a
Allaerts, D., Quon, E., and Churchfield, M.: Using Observational Mean-flow Data to Drive Large-eddy Simulations of a Diurnal Cycle at the SWiFT Site, Wind Energy, 26, 469–492, https://doi.org/10.1002/we.2811, 2023. a, b, c, d, e, f
Allaerts, D. J. N., Quon, E., Draxl, C., and Churchfield, M.: Development of a Time–Height Profile Assimilation Technique for Large-Eddy Simulation, Bound.-Lay. Meteorol., 176, 2533–2550, https://doi.org/10.1007/s10546-020-00538-5, 2020. a, b, c, d, e, f, g, h
Short summary
Engineering models used to design wind farms generally do not account for realistic atmospheric conditions that can rapidly evolve from minute to minute. This paper uses a first-principles simulation technique to predict the performance of five wind turbines during a wind farm control experiment. Challenges included limited observations and atypical conditions. The simulation accurately predicts the aerodynamics of a turbine when it is situated partially within the wake of an upstream turbine.
Share
Altmetrics
Final-revised paper
Preprint