Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-841-2024
https://doi.org/10.5194/wes-9-841-2024
Review article
 | 
10 Apr 2024
Review article |  | 10 Apr 2024

Control-oriented modelling of wind direction variability

Scott Dallas, Adam Stock, and Edward Hart

Related authors

Wind turbine wake detection and characterisation utilising blade loads and SCADA data: a generalised approach
Piotr Fojcik, Edward Hart, and Emil Hedevang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-17,https://doi.org/10.5194/wes-2025-17, 2025
Preprint under review for WES
Short summary
Brief communication: An elliptical parameterisation of the wind direction rose
Edward Hart
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-187,https://doi.org/10.5194/wes-2024-187, 2025
Preprint under review for WES
Short summary
Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1533–1550, https://doi.org/10.5194/wes-7-1533-2022,https://doi.org/10.5194/wes-7-1533-2022, 2022
Short summary
Impacts of wind field characteristics and non-steady deterministic wind events on time-varying main-bearing loads
Edward Hart, Adam Stock, George Elderfield, Robin Elliott, James Brasseur, Jonathan Keller, Yi Guo, and Wooyong Song
Wind Energ. Sci., 7, 1209–1226, https://doi.org/10.5194/wes-7-1209-2022,https://doi.org/10.5194/wes-7-1209-2022, 2022
Short summary
Wind turbine main-bearing lubrication – Part 1: An introductory review of elastohydrodynamic lubrication theory
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1021–1042, https://doi.org/10.5194/wes-7-1021-2022,https://doi.org/10.5194/wes-7-1021-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Observations of wind farm wake recovery at an operating wind farm
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025,https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Periods of constant wind speed: how long do they last in the turbulent atmospheric boundary layer?
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci., 10, 347–360, https://doi.org/10.5194/wes-10-347-2025,https://doi.org/10.5194/wes-10-347-2025, 2025
Short summary
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025,https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Simulations suggest offshore wind farms modify low-level jets
Daphne Quint, Julie K. Lundquist, and David Rosencrans
Wind Energ. Sci., 10, 117–142, https://doi.org/10.5194/wes-10-117-2025,https://doi.org/10.5194/wes-10-117-2025, 2025
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025,https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary

Cited articles

Andrade, J. R. and Bessa, R. J.: Improving renewable energy forecasting with a grid of numerical weather predictions, IEEE T. Sustain. Energ., 8, 1571–1580, https://doi.org/10.1109/TSTE.2017.2694340, 2017. a
Annoni, J., Bay, C., Taylor, T., Pao, L., Fleming, P., and Johnson, K.: Efficient optimization of large wind farms for real-time control, in: 2018 Annual American Control Conference (ACC), Milwaukee, 27–29 June 2018, 6200–6205, IEEE, https://doi.org/10.23919/ACC.2018.8430751, 2018a. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018b. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019a. a, b, c, d, e, f, g
Annoni, J., Dall'Anese, E., Hong, M., and Bay, C. J.: Efficient distributed optimization of wind farms using proximal primal-dual algorithms, 2019 American Control Conference, Philadelphia, USA, 10–12 July 2019, 4173–4178, IEEE, https://doi.org/10.23919/ACC.2019.8814655, 2019b. a
Download
Short summary
This review presents the current understanding of wind direction variability in the context of control-oriented modelling of wind turbines and wind farms in a manner suitable to a wide audience. Motivation comes from the significant and commonly seen yaw error of horizontal axis wind turbines, which carries substantial negative impacts on annual energy production and the levellised cost of wind energy. Gaps in the literature are identified, and the critical challenges in this area are discussed.
Share
Altmetrics
Final-revised paper
Preprint