Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-841-2024
https://doi.org/10.5194/wes-9-841-2024
Review article
 | 
10 Apr 2024
Review article |  | 10 Apr 2024

Control-oriented modelling of wind direction variability

Scott Dallas, Adam Stock, and Edward Hart

Related authors

Reductions in wind farm main bearing rating lives resulting from wake impingement
Julian Quick, Edward Hart, Marcus Binder Nilsen, Rasmus Sode Lund, Jaime Liew, Piinshin Huang, Pierre-Elouan Rethore, Jonathan Keller, Wooyong Song, and Yi Guo
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-63,https://doi.org/10.5194/wes-2025-63, 2025
Preprint under review for WES
Short summary
Wind turbine wake detection and characterisation utilising blade loads and SCADA data: a generalised approach
Piotr Fojcik, Edward Hart, and Emil Hedevang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-17,https://doi.org/10.5194/wes-2025-17, 2025
Preprint under review for WES
Short summary
Brief communication: An elliptical parameterisation of the wind direction rose
Edward Hart
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-187,https://doi.org/10.5194/wes-2024-187, 2025
Revised manuscript under review for WES
Short summary
Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1533–1550, https://doi.org/10.5194/wes-7-1533-2022,https://doi.org/10.5194/wes-7-1533-2022, 2022
Short summary
Impacts of wind field characteristics and non-steady deterministic wind events on time-varying main-bearing loads
Edward Hart, Adam Stock, George Elderfield, Robin Elliott, James Brasseur, Jonathan Keller, Yi Guo, and Wooyong Song
Wind Energ. Sci., 7, 1209–1226, https://doi.org/10.5194/wes-7-1209-2022,https://doi.org/10.5194/wes-7-1209-2022, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025,https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary
Flow acceleration statistics: a new paradigm for wind-driven loads, towards probabilistic turbine design
Mark Kelly
Wind Energ. Sci., 10, 535–558, https://doi.org/10.5194/wes-10-535-2025,https://doi.org/10.5194/wes-10-535-2025, 2025
Short summary
Observations of wind farm wake recovery at an operating wind farm
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025,https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Periods of constant wind speed: how long do they last in the turbulent atmospheric boundary layer?
Daniela Moreno, Jan Friedrich, Matthias Wächter, Jörg Schwarte, and Joachim Peinke
Wind Energ. Sci., 10, 347–360, https://doi.org/10.5194/wes-10-347-2025,https://doi.org/10.5194/wes-10-347-2025, 2025
Short summary

Cited articles

Andrade, J. R. and Bessa, R. J.: Improving renewable energy forecasting with a grid of numerical weather predictions, IEEE T. Sustain. Energ., 8, 1571–1580, https://doi.org/10.1109/TSTE.2017.2694340, 2017. a
Annoni, J., Bay, C., Taylor, T., Pao, L., Fleming, P., and Johnson, K.: Efficient optimization of large wind farms for real-time control, in: 2018 Annual American Control Conference (ACC), Milwaukee, 27–29 June 2018, 6200–6205, IEEE, https://doi.org/10.23919/ACC.2018.8430751, 2018a. a
Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018b. a
Annoni, J., Bay, C., Johnson, K., Dall'Anese, E., Quon, E., Kemper, T., and Fleming, P.: Wind direction estimation using SCADA data with consensus-based optimization, Wind Energ. Sci., 4, 355–368, https://doi.org/10.5194/wes-4-355-2019, 2019a. a, b, c, d, e, f, g
Annoni, J., Dall'Anese, E., Hong, M., and Bay, C. J.: Efficient distributed optimization of wind farms using proximal primal-dual algorithms, 2019 American Control Conference, Philadelphia, USA, 10–12 July 2019, 4173–4178, IEEE, https://doi.org/10.23919/ACC.2019.8814655, 2019b. a
Download
Short summary
This review presents the current understanding of wind direction variability in the context of control-oriented modelling of wind turbines and wind farms in a manner suitable to a wide audience. Motivation comes from the significant and commonly seen yaw error of horizontal axis wind turbines, which carries substantial negative impacts on annual energy production and the levellised cost of wind energy. Gaps in the literature are identified, and the critical challenges in this area are discussed.
Share
Altmetrics
Final-revised paper
Preprint