Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-231-2018
https://doi.org/10.5194/wes-3-231-2018
Research article
 | 
04 May 2018
Research article |  | 04 May 2018

Aero-elastic wind turbine design with active flaps for AEP maximization

Michael K. McWilliam, Thanasis K. Barlas, Helge A. Madsen, and Frederik Zahle

Related authors

A sensitivity-based estimation method for investigating control co-design relevance
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024,https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021,https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence
Kenneth Loenbaek, Christian Bak, and Michael McWilliam
Wind Energ. Sci., 6, 917–933, https://doi.org/10.5194/wes-6-917-2021,https://doi.org/10.5194/wes-6-917-2021, 2021
Short summary

Related subject area

Control and system identification
Load reduction for wind turbines: an output-constrained, subspace predictive repetitive control approach
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022,https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
A reference open-source controller for fixed and floating offshore wind turbines
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022,https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Experimental results of wake steering using fixed angles
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021,https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary

Cited articles

Ashuri, T., Zaaijer, M., Martins, J., van Bussel, G., and van Kuik, G.: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy, Renew. Energ., 68, 893–905, https://doi.org/10.1016/j.renene.2014.02.045, 2014.
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine, Tech. rep., Technical University of Denmark, Institute for Wind Energy, Denmark, 2013.
Barlas, T. K.: Active aerodynamic load control on wind turbine blades: Aeroservoelastic modelling and wind tunnel experiments, PhD thesis, TU Delft, available at: https://repository.tudelft.nl/islandora/object/uuid%3A6918a4d0-2b75-44e6-bf33-2822d7c2d264 (last access: May 2018), 2011.
Barlas, T. K. and van Kuik, G. A. M.: Review of state of the art in smart rotor control research for wind turbines, Prog. Aerosp. Sci., 46, 1–27, 2010.
Barlas, T. K., Pettas, V., Gertz, D., and Madsen, H. A.: Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis, J. Phys. Conf. Ser., 753, 042001, https://doi.org/10.1088/1742-6596/753/4/042001, 2016a.
Download
Short summary
Maximizing wind energy production is challenging because the winds are always changing. Design optimization was used to explore how flaps can give rotor design engineers greater ability to adapt the rotor for different conditions. For rotors designed for peak efficiency (i.e. older designs) the flap adds 0.5 % improvement in energy production. However, for modern designs that optimize both the performance and the structure, the flap can provide a 1 % improvement.
Altmetrics
Final-revised paper
Preprint