Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-313-2018
https://doi.org/10.5194/wes-3-313-2018
Research article
 | 
31 May 2018
Research article |  | 31 May 2018

Very short-term forecast of near-coastal flow using scanning lidars

Laura Valldecabres, Alfredo Peña, Michael Courtney, Lueder von Bremen, and Martin Kühn

Related authors

The impact of far-reaching offshore cluster wakes on wind turbine fatigue loads
Arjun Anantharaman, Jörge Schneemann, Frauke Theuer, Laurent Beaudet, Valentin Bernard, Paul Deglaire, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-20,https://doi.org/10.5194/wes-2025-20, 2025
Preprint under review for WES
Short summary
Field comparison of load-based wind turbine wake tracking with a scanning lidar reference
David Onnen, Gunner Christian Larsen, Alan Wai Hou Lio, Paul Hulsman, Martin Kühn, and Vlaho Petrović
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-188,https://doi.org/10.5194/wes-2024-188, 2025
Preprint under review for WES
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025,https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
Dynamic induction control for mitigation of wake-induced power losses: a wind tunnel study under different inflow conditions
Manuel Alejandro Zúñiga Inestroza, Paul Hulsman, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-171,https://doi.org/10.5194/wes-2024-171, 2025
Preprint under review for WES
Short summary
Enhancing minute-scale lidar-based power forecasts of offshore wind farms towards an operational use
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141,https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary

Related subject area

Electricity conversion, forecasting, grid & market integration
Power fluctuations in high-installation- density offshore wind fleets
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021,https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
Mathieu Pichault, Claire Vincent, Grant Skidmore, and Jason Monty
Wind Energ. Sci., 6, 131–147, https://doi.org/10.5194/wes-6-131-2021,https://doi.org/10.5194/wes-6-131-2021, 2021
Short summary
North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind power installations
Matti Koivisto, Juan Gea-Bermúdez, Polyneikis Kanellas, Kaushik Das, and Poul Sørensen
Wind Energ. Sci., 5, 1705–1712, https://doi.org/10.5194/wes-5-1705-2020,https://doi.org/10.5194/wes-5-1705-2020, 2020
Short summary
Comparison of electrical collection topologies for multi-rotor wind turbines
Paul Pirrie, David Campos-Gaona, and Olimpo Anaya-Lara
Wind Energ. Sci., 5, 1237–1252, https://doi.org/10.5194/wes-5-1237-2020,https://doi.org/10.5194/wes-5-1237-2020, 2020
Short summary

Cited articles

Alexiadis, M., Dokopoulos, P., Sahsamanoglou, H., and Manousaridis, I.: Short-term forecasting of wind speed and related electrical power, Sol. Energy, 63, 61–68, https://doi.org/10.1016/S0038-092X(98)00032-2, 1998. a
Barthelmie, R., Murray, F., and Pryor, S.: The economic benefit of short-term forecasting for wind energy in the UK electricity market, Energ. Policy, 36, 1687–1696, https://doi.org/10.1016/j.enpol.2008.01.027, 2008. a
Beck, H. and Kühn, M.: Dynamic data filtering of long-range Doppler LiDAR wind speed measurements, Remote Sensing-Basel, 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Box, G. E. P. and Jenkins, G. M.: Time series analysis: forecasting and control, J. Time Ser. Anal., 31, p. 303, https://doi.org/10.1111/j.1467-9892.2009.00643.x, 1976. a
Cadenas, E. and Rivera, W.: Wind speed forecasting in the South Coast of Oaxaca, México, Renew. Energ., 32, 2116–2128, https://doi.org/10.1016/j.renene.2006.10.005, 2007. a
Download
Short summary
This paper focuses on the use of scanning lidars for very short-term forecasting of wind speeds in a near-coastal area. An extensive data set of offshore lidar measurements up to 6 km has been used for this purpose. Using dual-doppler measurements, the topographic characteristics of the area have been modelled. Assuming Taylor's frozen turbulence and applying the topographic corrections, we demonstrate that we can forecast wind speeds with more accuracy than the benchmarks persistence or ARIMA.
Share
Altmetrics
Final-revised paper
Preprint