Articles | Volume 3, issue 1
https://doi.org/10.5194/wes-3-313-2018
https://doi.org/10.5194/wes-3-313-2018
Research article
 | 
31 May 2018
Research article |  | 31 May 2018

Very short-term forecast of near-coastal flow using scanning lidars

Laura Valldecabres, Alfredo Peña, Michael Courtney, Lueder von Bremen, and Martin Kühn

Related authors

Tall Wind Profile Validation Using Lidar Observations and Hindcast Data
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-119,https://doi.org/10.5194/wes-2024-119, 2024
Preprint under review for WES
Short summary
On the lidar-turbulence paradox and possible countermeasures
Alfredo Peña, Ginka Georgieva Yankova, and Vasiliki Mallini
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-108,https://doi.org/10.5194/wes-2024-108, 2024
Revised manuscript accepted for WES
Short summary
Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024,https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024,https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary

Related subject area

Electricity conversion, forecasting, grid & market integration
Power fluctuations in high-installation- density offshore wind fleets
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021,https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Future economic perspective and potential revenue of non-subsidized wind turbines in Germany
Lucas Blickwedel, Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 177–190, https://doi.org/10.5194/wes-6-177-2021,https://doi.org/10.5194/wes-6-177-2021, 2021
Short summary
Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
Mathieu Pichault, Claire Vincent, Grant Skidmore, and Jason Monty
Wind Energ. Sci., 6, 131–147, https://doi.org/10.5194/wes-6-131-2021,https://doi.org/10.5194/wes-6-131-2021, 2021
Short summary
North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind power installations
Matti Koivisto, Juan Gea-Bermúdez, Polyneikis Kanellas, Kaushik Das, and Poul Sørensen
Wind Energ. Sci., 5, 1705–1712, https://doi.org/10.5194/wes-5-1705-2020,https://doi.org/10.5194/wes-5-1705-2020, 2020
Short summary
Comparison of electrical collection topologies for multi-rotor wind turbines
Paul Pirrie, David Campos-Gaona, and Olimpo Anaya-Lara
Wind Energ. Sci., 5, 1237–1252, https://doi.org/10.5194/wes-5-1237-2020,https://doi.org/10.5194/wes-5-1237-2020, 2020
Short summary

Cited articles

Alexiadis, M., Dokopoulos, P., Sahsamanoglou, H., and Manousaridis, I.: Short-term forecasting of wind speed and related electrical power, Sol. Energy, 63, 61–68, https://doi.org/10.1016/S0038-092X(98)00032-2, 1998. a
Barthelmie, R., Murray, F., and Pryor, S.: The economic benefit of short-term forecasting for wind energy in the UK electricity market, Energ. Policy, 36, 1687–1696, https://doi.org/10.1016/j.enpol.2008.01.027, 2008. a
Beck, H. and Kühn, M.: Dynamic data filtering of long-range Doppler LiDAR wind speed measurements, Remote Sensing-Basel, 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Box, G. E. P. and Jenkins, G. M.: Time series analysis: forecasting and control, J. Time Ser. Anal., 31, p. 303, https://doi.org/10.1111/j.1467-9892.2009.00643.x, 1976. a
Cadenas, E. and Rivera, W.: Wind speed forecasting in the South Coast of Oaxaca, México, Renew. Energ., 32, 2116–2128, https://doi.org/10.1016/j.renene.2006.10.005, 2007. a
Download
Short summary
This paper focuses on the use of scanning lidars for very short-term forecasting of wind speeds in a near-coastal area. An extensive data set of offshore lidar measurements up to 6 km has been used for this purpose. Using dual-doppler measurements, the topographic characteristics of the area have been modelled. Assuming Taylor's frozen turbulence and applying the topographic corrections, we demonstrate that we can forecast wind speeds with more accuracy than the benchmarks persistence or ARIMA.
Altmetrics
Final-revised paper
Preprint