Articles | Volume 7, issue 3
https://doi.org/10.5194/wes-7-1241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Offshore wind farm cluster wakes as observed by long-range-scanning wind lidar measurements and mesoscale modeling
Beatriz Cañadillas
CORRESPONDING AUTHOR
Institute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany
Renewables, UL International GmbH, Oldenburg, Germany
Maximilian Beckenbauer
Institute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany
Juan J. Trujillo
Renewables, UL International GmbH, Oldenburg, Germany
Martin Dörenkämper
Fraunhofer Institute for Wind Energy Systems, Oldenburg, Germany
Richard Foreman
Renewables, UL International GmbH, Oldenburg, Germany
Thomas Neumann
Renewables, UL International GmbH, Oldenburg, Germany
Astrid Lampert
Institute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany
Related authors
Anna Voss, Konrad B. Bärfuss, Beatriz Cañadillas, Maik Angermann, Mark Bitter, Matthias Cremer, Thomas Feuerle, Jonas Spoor, Julie K. Lundquist, Patrick Moriarty, and Astrid Lampert
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-113, https://doi.org/10.5194/wes-2025-113, 2025
Preprint under review for WES
Short summary
Short summary
This study analyses onshore wind farm wakes in a semi-complex terrain with data conducted with the research aircraft of TU Braunschweig during the AWAKEN project. Vertical profiles of temperature, humidity and wind give insights into the stratification of the atmospheric boundary layer, while horizontal profiles downwind of wind farms reveal an amplification of the reduction in wind speed in a semi-complex terrain in particular in a distance of 10 km.
Amanda Sellmaier, Ellen Damm, Torsten Sachs, Benjamin Kirbus, Inge Wiekenkamp, Annette Rinke, Falk Pätzold, Daiki Nomura, Astrid Lampert, and Markus Rex
EGUsphere, https://doi.org/10.5194/egusphere-2025-3778, https://doi.org/10.5194/egusphere-2025-3778, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents continuous ship-borne measurements of methane (CH4) concentration and its isotopic composition monitored during the ice drift MOSAiC expedition in 2020. By applying trajectory analysis, we linked atmospheric CH4 variabilities to air mass pathways transported either over open water or sea ice. This study will contribute to reveal the potential role of ship-borne measurements for filing significant observational gaps in the high Arctic.
Anna Voss, Konrad B. Bärfuss, Beatriz Cañadillas, Maik Angermann, Mark Bitter, Matthias Cremer, Thomas Feuerle, Jonas Spoor, Julie K. Lundquist, Patrick Moriarty, and Astrid Lampert
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-113, https://doi.org/10.5194/wes-2025-113, 2025
Preprint under review for WES
Short summary
Short summary
This study analyses onshore wind farm wakes in a semi-complex terrain with data conducted with the research aircraft of TU Braunschweig during the AWAKEN project. Vertical profiles of temperature, humidity and wind give insights into the stratification of the atmospheric boundary layer, while horizontal profiles downwind of wind farms reveal an amplification of the reduction in wind speed in a semi-complex terrain in particular in a distance of 10 km.
Johanna Borowski, Sandra Schwegmann, Kerstin Avila, and Martin Dörenkämper
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-117, https://doi.org/10.5194/wes-2025-117, 2025
Preprint under review for WES
Short summary
Short summary
Assessing the wind resource and mitigating its associated uncertainties are crucial to wind farm profitability. The study quantifies the uncertainty due to inter-annual variability, averaging 6.5 % and ranging from 1 % to 14 %, using long-term, quality-controlled wind measurements from tall met masts in terrain of varying complexity. Further, the results indicate that machine learning models are beneficial to mitigate the impact of inter-annual variability in heterogeneous and complex terrain.
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Alexander Mönnig, Ansgar Hahn, Astrid Lampert, and Ulrich Römer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-112, https://doi.org/10.5194/wes-2025-112, 2025
Preprint under review for WES
Short summary
Short summary
To enable efficient load estimation in wind farms, e.g. to assess Remaining Useful Life, we investigated the feasibility of using surrogate models based on open-source turbine models. In a case study, we adapted such a model to match turbines from a real German onshore wind farm, ran aeroelastic simulations, and trained surrogate models to reconstruct loads observed in 5 years of SCADA data. Comparing predicted and measured values showed promising accuracy, especially for blade bending moments.
Eric Förster, Heidi Huntrieser, Michael Lichtenstern, Falk Pätzold, Lutz Bretschneider, Andreas Schlerf, Sven Bollmann, Astrid Lampert, Jarosław Nęcki, Paweł Jagoda, Justyna Swolkień, Dominika Pasternak, Robert A. Field, and Anke Roiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1010, https://doi.org/10.5194/egusphere-2025-1010, 2025
Short summary
Short summary
We introduce a helicopter-borne mass balance approach, utilizing the HELiPOD platform, to accurately quantify methane (CH₄) emissions from coal mining activities. The comparison of our top-down mass flux estimates (up to 3000 kg h-1) against those from bottom-up in-mine CH4 safety sensors revealed very good agreement. This approach also has a great potential in quantifying emission source strengths (down to 20 kg h-1) from a wide range of other CH4 emitters (e.g. landfills, oil & gas industry).
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Astrid Lampert, Rudolf Hankers, Thomas Feuerle, Thomas Rausch, Matthias Cremer, Maik Angermann, Mark Bitter, Jonas Füllgraf, Helmut Schulz, Ulf Bestmann, and Konrad B. Bärfuss
Earth Syst. Sci. Data, 16, 4777–4792, https://doi.org/10.5194/essd-16-4777-2024, https://doi.org/10.5194/essd-16-4777-2024, 2024
Short summary
Short summary
We conducted flights above the North Sea and investigated changes in the wind field. The research aircraft measured wind speed, wind direction, temperature, humidity and sea surface at high resolution. Wind parks reduce the wind speed, and the data help to determine how long it takes for the wind speed to recover. The coast also plays an important role, and the wind speed varies with distance from the coast. The results help in wind park planning and better estimating the energy yield.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Barbara Harm-Altstädter, Konrad Bärfuss, Lutz Bretschneider, Martin Schön, Jens Bange, Ralf Käthner, Radovan Krejci, Mauro Mazzola, Kihong Park, Falk Pätzold, Alexander Peuker, Rita Traversi, Birgit Wehner, and Astrid Lampert
Aerosol Research, 1, 39–64, https://doi.org/10.5194/ar-1-39-2023, https://doi.org/10.5194/ar-1-39-2023, 2023
Short summary
Short summary
We present observations of aerosol particles and meteorological parameters in the horizontal and vertical distribution measured with uncrewed aerial systems in the Arctic. The field campaign was carried out during the snow melting season, when ultrafine aerosol particles (UFPs) with a size between 3 and 12 nm occurred frequently. A high variability of the measured UFPs was identified in the spatial scale, which was strongly associated with different atmospheric boundary layer properties.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Short summary
We present three methods that can determine the alignment of a lidar placed on the transition piece of an offshore wind turbine based on measurements with the instrument: a practical implementation of hard targeting for north alignment, a method called sea surface levelling to determine the levelling of the system from water surface measurements, and a model that can determine the dynamic levelling based on the operating status of the wind turbine.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Cited articles
Ahsbahs, T., Badger, M., Volker, P., Hansen, K. S., and Hasager, C. B.: Applications of satellite winds for the offshore wind farm site Anholt, Wind Energ. Sci., 3, 573–588, https://doi.org/10.5194/wes-3-573-2018, 2018. a
Ahsbahs, T., Nygaard, N., Newcombe, A., and Badger, M.: Wind Farm Wakes from
SAR and Doppler Radar, Remote Sensing, 12, 462, https://doi.org/10.3390/rs12030462, 2020. a, b
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.:
Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor
Data, J. Atmos. Ocean. Tech., 31, 765–787,
https://doi.org/10.1175/JTECH-D-13-00104.1, 2014. a
Akhtar, N., Geyer, B., Rockel, B., Sommer, P. S., and Schrum, C.: Accelerating
deployment of offshore wind energy alter wind climate and reduce future power
generation potentials, Sci. Rep., 11, 11826,
https://doi.org/10.1038/s41598-021-91283-3, 2021. a, b
Archer, C., Wu, S., ma, Y., and Jimenez, P.: Two Corrections for Turbulent
Kinetic Energy Generated by Wind Farms in the WRF Model, Mon. Weather
Rev., 148, 4823–4835, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. a
Bastine, D., Wächter, M., Peinke, J., Trabucchi, D., and Kühn, M.:
Characterizing Wake Turbulence with Staring Lidar Measurements, Journal of Physics: Conference Series, 625,
012006, https://doi.org/10.1088/1742-6596/625/1/012006, 2015. a
Cañadillas, B.: Figures wes-2021-159 manuscript, figshare [data set],
https://doi.org/10.6084/m9.figshare.19747252.v1, 2022. a
Bingöl, F., Mann, J., and Larsen, G. C.: Light detection and ranging
measurements of wake dynamics part I: one-dimensional scanning, Wind Energy,
13, 51–61, https://doi.org/10.1002/we.352, 2010. a
Borraccino, A., Courtney, M., and Wagner, R.: Generic Methodology for Field
Calibration of Nacelle-Based Wind Lidars, Remote Sensing, 8, 6588–6596,
https://doi.org/10.3390/rs8110907, 2016. a
Brower, M. and Robinson, N.: The OpenWind deep-array wake model: development
and validation, Tech. rep., AWS Truepower, Albany, NY, USA, 2012. a
BSH: Flächenentwicklungsplan 2020 für die deutsche Nord- und Ostsee,
Tech. Rep. 7608, BSH – Bundesamt für Seeschiffahrt und Hydrographie,
https://www.bsh.de/DE/THEMEN/Offshore/Meeresfachplanung/Fortschreibung/_Anlagen/Downloads/FEP_2020_Flaechenentwicklungsplan_2020.pdf?__blob=publicationFile&v=6, last access: 1 April 2021. a
Cañadillas, B., Foreman, R., Barth, V., Siedersleben, S., Lampert, A.,
Platis, A., Djath, B., Schulz-Stellenfleth, J., Bange, J., Emeis, S., and
Neumann, T.: Offshore wind farm wake recovery: Airborne measurements and its
representation in engineering models, Wind Energy, 23, 1249–1265,
https://doi.org/10.1002/we.2484, 2020. a, b, c, d, e, f
Christiansen, M. and Hasager, C.: Wake effects of large offshore wind farms
identified from satellite SAR, Remote Sens. Environ., 98, 251–268,
https://doi.org/10.1016/j.rse.2005.07.009, 2005. a
Corsmeier, U., Hankers, R., and Wieser, A.: Airborne turbulence measurements in
the lower troposphere onboard the research aircraft Dornier 128-6, D-IBUF,
Meteorol. Z., 10, 315–329,
https://doi.org/10.1127/0941-2948/2001/0010-0315, 2001. a
Djath, B., Schulz-Stellenfleth, J., and Cañadillas, B.: Impact of
atmospheric stability on X-band and C-band synthetic aperture radar imagery
of offshore windpark wakes, J. Renew. Sustain. Energ., 10, 043301,
https://doi.org/10.1063/1.5020437, 2018. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a, b
Emeis, S.: A simple analytical wind park model considering atmospheric
stability, Wind Energy, 13, 459–469, https://doi.org/10.1002/we.367, 2010. a
Emeis, S.: Wind Energy Meteorology:Atmospheric Physics for Wind Power
Generation, Springer International Publishing, 2 edn.,
https://doi.org/10.1007/978-3-319-72859-9, 2018. a
Fischler, M. A. and Bolles, R.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Communications of the ACM, 24, 381–395, https://doi.org/10.1145/358669.358692,
1981. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K.,
Michalakes, J., and Barstad, I.: Local and mesoscale impacts of wind farms as
parameterized in a mesoscale nwp model, Mon. Weather Rev., 140, 3017–3038,
https://doi.org/10.1175/MWR-D-11-00352.1, 2012. a, b, c, d
Franke, K.: Summary of classification of remote sensing device, type: Leosphere
WINDCUBE, techreport PP18030.A1, Deutsche WindGuard Consulting GmbH, Varel,
DE, 2018. a
Frühmann, R., Neumann, T., and Decker, H.: Platform based infrared sea
surface temperature measurement: experiences from a one year trial in the
North Sea, in: Deutsche Windenergie-Konferenz (DEWEK), 2018. a
Goit, J., Yamaguchi, A., and Ishihara, T.: Measurement and Prediction of Wind
Fields at an Offshore Site by Scanning Doppler LiDAR and WRF, Atmosphere, 11,
1–20, https://doi.org/10.3390/atmos11050442, 2020. a
Gómez Arranz, P. and Courtney, M.: WP1 – Literature Review: Scanning
Lidar For Wind Turbine Power Performance Testing, 2021. a
Gottschall, J. and Dörenkämper, M.: Understanding and mitigating the impact of data gaps on offshore wind resource estimates, Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, 2021. a, b
Gottschall, J., Catalano, E., Dörenkämper, M., and Witha, B.: The NEWA Ferry
Lidar Experiment: Measuring Mesoscale Winds in the Southern Baltic Sea,
Remote Sensing, 10, 1620, https://doi.org/10.3390/rs10101620, 2018. a, b
Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas – Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020. a, b
Herges, T. G., Maniaci, D. C., Naughton, B. T., Mikkelsen, T., and
Sjöholm, M.: High resolution wind turbine wake measurements with a
scanning lidar, in: Journal of Physics Conference Series, vol. 854 of Journal of Physics Conference Series, 854, 012021,
https://doi.org/10.1088/1742-6596/854/1/012021, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Huang, H.-P., Giannakopoulou, E.-M., and Nhili, R.: WRF Model Methodology for
Offshore Wind Energy Applications, Adv. Meteorol., 2014, 1687–9309,
https://doi.org/10.1155/2014/319819, 2014. a
IEC-61400-12-1: Wind energy generation systems – Part 12-1: Power performance
measurements of electricity producing wind turbines, International Standard
IEC TC 29110-1:2016, International Electrotechnical Commission, Geneve,
Switzerland, https://webstore.iec.ch/publication/26603 (last access: 10 December 2021), 2017. a, b
Iungo, G. V. and Porté-Agel, F.: Volumetric Lidar Scanning of Wind Turbine
Wakes under Convective and Neutral Atmospheric Stability Regimes, J.
Atmos. Ocean. Tech., 31, 2035–2048,
https://doi.org/10.1175/JTECH-D-13-00252.1, 2014. a
Käsler, Y., Rahm, S., Simmet, R., and Kühn, M.: Wake Measurements of a
Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar,
J. Atmos. Ocean. Tech., 27, 1529–1532,
https://doi.org/10.1175/2010JTECHA1483.1, 2010. a
Kibona, T. E.: Application of WRF mesoscale model for prediction of wind energy
resources in Tanzania, Scientific African, 7, e00302,
https://doi.org/10.1016/j.sciaf.2020.e00302, 2020. a
Krishnamurthy, R., Reuder, J., Svardal, B., Fernando, H., and Jakobsen, J.:
Offshore Wind Turbine Wake characteristics using Scanning Doppler Lidar,
Energy Procedia, 137, 428–442,
https://doi.org/10.1016/j.egypro.2017.10.367, 2017. a, b
Lampert, A., Bärfuss, K., Platis, A., Siedersleben, S., Djath, B., Cañadillas, B., Hunger, R., Hankers, R., Bitter, M., Feuerle, T., Schulz, H., Rausch, T., Angermann, M., Schwithal, A., Bange, J., Schulz-Stellenfleth, J., Neumann, T., and Emeis, S.: In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight, Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, 2020. a, b, c
Larsén, X. G. and Fischereit, J.: A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets, Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, 2021. a, b
Lee, J. and Zhao, F.: Global wind report 2021, Tech. rep., Global Wind Energy
Council (GWEC), Brussels, Belgium, 2021. a
Lundquist, J. K., Churchfield, M. J., Lee, S., and Clifton, A.: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics, Atmos. Meas. Tech., 8, 907–920, https://doi.org/10.5194/amt-8-907-2015, 2015. a, b
METEK-GmbH: Doppler Lidar Stream Line XR, Brochure,
https://metek.de/de/wp-content/uploads/sites/6/2016/01/20150410_DataSheet_StreamLineXR.pdf (last access: 7 February 2022),
2021. a
NCAR Users Page: WRF Model User’s Page, WRF Version 4.0.1,
https://doi.org/10.5065/D6MK6B4K, 2021. a
Newsom, R. K., Brewer, W. A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., and Lundquist, J. K.: Validating precision estimates in horizontal wind measurements from a Doppler lidar, Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/amt-10-1229-2017, 2017. a
Nygaard, N. and Newcombe, A.: Wake behind an offshore wind farm observed with
dual-Doppler radars, Journal of Physics: Conference Series, 1037, 072008,
https://doi.org/10.1088/1742-6596/1037/7/072008, 2018. a
Patrick, V., Hahmann, A. N., and Badger, J.: Wake Effects of Large Offshore
Wind Farms – a study of the Mesoscale Atmosphere, Ph.D. thesis, DTU Wind
Energy, Denmark, 2014. a
Platis, A., Bange, J., Bärfuss, K., Cañadillas, B., Hundhausen, M.,
Djath, B., Lampert, A., Schulz-Stellenfleth, J., Siedersleben, S., Neumann,
T., and Emeis, S.: Long-range modifications of the wind field by offshore
wind parks – results of the project WIPAFF, Meteorol.
Z., 29, 355–376, https://doi.org/10.1127/metz/2020/1023,
2020. a
Platis, A., Hundhausen, M., Mauz, M., Siedersleben, S., Lampert, A., Emeis, S.,
and Bange, J.: The Role of Atmospheric Stability and Turbulence in Offshore
Wind-Farm Wakes in the German Bight, Bound.-Lay. Meteorol., 182,
1573–1472, https://doi.org/10.1007/s10546-021-00668-4, 2021. a
Pryor, S. C., Shepherd, T. J., Barthelmie, R. J., Hahmann, A. N., and Volker,
P.: Wind Farm Wakes Simulated Using WRF, J. Phys.: Conf. Ser., 1256,
012025, https://doi.org/10.1088/1742-6596/1256/1/012025, 2019. a
Rettenmeier, A., Schlipf, D., Würth, I., and Cheng, P. W.: Power Performance
Measurements of the NREL CART-2 Wind Turbine Using a Nacelle-Based Lidar
Scanner, J. Atmos. Ocean. Tech., 31, 2029–2034,
https://doi.org/10.1175/JTECH-D-13-00154.1, 2014. a
Rott, A., Schneemann, J., Theuer, F., Trujillo Quintero, J. J., and Kühn, M.: Alignment of scanning lidars in offshore wind farms, Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, 2022. a
Schneemann, J., Rott, A., Dörenkämper, M., Steinfeld, G., and Kühn, M.: Cluster wakes impact on a far-distant offshore wind farm's power, Wind Energ. Sci., 5, 29–49, https://doi.org/10.5194/wes-5-29-2020, 2020. a, b
Schneemann, J., Theuer, F., Rott, A., Dörenkämper, M., and Kühn, M.: Offshore wind farm global blockage measured with scanning lidar, Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, 2021. a
Siedersleben, S. K., Lundquist, J. K., Platis, A., Bange, J., Bärfuss, K.,
Lampert, A., Cañadillas, B., Neumann, T., and Emeis, S.:
Micrometeorological impacts of offshore wind farms as seen in observations
and simulations, Environ. Res. Lett., 13, 1–12,
https://doi.org/10.1088/1748-9326/aaea0b, 2018a. a, b
Siedersleben, S. K., Platis, A., Lundquist, J. K., Lampert, A., Bärfuss,
K., Canadillas, B., Djath, B., Schulz-Stellenfleth, J., Bange, J., Neumann,
T., and Emeis, S.: Evaluation of a Wind Farm Parametrization for Mesoscale
Atmospheric Flow Models with Aircraft Measurements, Meteorol.
Z., 27, 401–415, https://doi.org/10.1127/metz/2018/0900, 2018b. a, b, c
Siedersleben, S. K., Platis, A., Lundquist, J. K., Djath, B., Lampert, A., Bärfuss, K., Cañadillas, B., Schulz-Stellenfleth, J., Bange, J., Neumann, T., and Emeis, S.: Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1), Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, 2020. a
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W.,
Power, J., Duda, M., Barker, D., and Huang, X.-Y.: A description of the
advanced research WRF version 3, Technical Report, 162 pages
NCAR/TN-556+STR, NCAR - National Center for Atmospheric Research, Boulder,
Colorado, USA, https://doi.org/10.5065/1dfh-6p97, 2019. a
Smalikho, I. N., Banakh, V. A., Pichugina, Y. L., Brewer, W. A., Banta, R. M.,
Lundquist, J. K., and Kelley, N. D.: Lidar Investigation of Atmosphere Effect
on a Wind Turbine Wake, J. Atmos. Ocean. Tech., 30,
2554–2570, https://doi.org/10.1175/JTECH-D-12-00108.1, 2013. a
Sørensen, T. L., Thøgersen, M. L., and Nielsen, P. M.: Adapting and
calibration of existing wake models to meet the conditions inside offshore
wind farms, EMD International A/S, 2008. a
Trujillo, J., Bingöl, F., Mann, J., and Larsen, G. C.: Light detection and
ranging measurements of wake dynamics part I: one-dimensional scanning, Wind
Energy, 13, 51–61, https://doi.org/10.1002/we.352, 2010. a
Volker, P. J. H., Badger, J., Hahmann, A. N., and Ott, S.: The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF, Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, 2015.
a
Wagner, R., Courtney, M. S., Pedersen, T. F., and Davoust, S.: Uncertainty of
power curve measurement with a two-beam nacelle-mounted lidar, Wind Energy,
19, 1269–1287, https://doi.org/10.1002/we.1897, 2016. a
Wang, H. and Barthelmie, R.: Wind turbine wake detection with a single Doppler
wind lidar, Journal of Physics: Conference Series, 625, 012017,
https://doi.org/10.1088/1742-6596/625/1/012017, 2015. a
Werner, C.: Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere,
chap. Doppler Wind Lidar, pp. 325–354, Springer-Verlag New York, 2005. a
WRF Users Page: WRF Model Physics Options and References,
https://www2.mmm.ucar.edu/wrf/users/phys_references.html
(last access: 13 July 2020), 2020. a
Zhan, L., Letizia, S., and Valerio Iungo, G.: LiDAR measurements for an onshore
wind farm: Wake variability for different incoming wind speeds and
atmospheric stability regimes, Wind Energy, 23, 501–527,
https://doi.org/10.1002/we.2430, 2020. a
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations...
Altmetrics
Final-revised paper
Preprint