Articles | Volume 8, issue 7
https://doi.org/10.5194/wes-8-1133-2023
https://doi.org/10.5194/wes-8-1133-2023
Research article
 | 
13 Jul 2023
Research article |  | 13 Jul 2023

Applying a random time mapping to Mann-modeled turbulence for the generation of intermittent wind fields

Khaled Yassin, Arne Helms, Daniela Moreno, Hassan Kassem, Leo Höning, and Laura J. Lukassen

Related authors

Numerical Investigation of Aerodynamic Performance of Wind Turbine Airfoils with Ice Accretion
Khaled Yassin, Hassan Kassem, Bernhard Stoevesandt, Thomas Klemme, and Joachim Peinke
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-3,https://doi.org/10.5194/wes-2021-3, 2021
Revised manuscript not accepted
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024,https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024,https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
Control-oriented modelling of wind direction variability
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024,https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary

Cited articles

Bangga, G. and Lutz, T.: Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data, Energy, 223, 120076, https://doi.org/10.1016/j.energy.2021.120076, 2021. a
Berg, J., Natarajan, A., Mann, J., and Patton, E. G.: Gaussian vs non-Gaussian turbulence: impact on wind turbine loads, Wind Energy, 19, 1975–1989, 2016. a
Boettcher, F., Renner, C., Waldl, H.-P., and Peinke, J.: On the statistics of wind gusts, Bound.-Lay. Meteorol., 108, 163–173, 2003. a
Böttcher, F., Barth, S., and Peinke, J.: Small and large scale fluctuations in atmospheric wind speeds, Stoch. Env. Res. Risk A., 21, 299–308, 2007. a, b
Download
Short summary
The current turbulent wind field models stated in the IEC 61400-1 standard underestimate the probability of extreme changes in wind velocity. This underestimation can lead to the false calculation of extreme and fatigue loads on the turbine. In this work, we are trying to apply a random time-mapping technique to one of the standard turbulence models to adapt to such extreme changes. The turbulent fields generated are compared with a standard wind field to show the effects of this new mapping.
Altmetrics
Final-revised paper
Preprint