Articles | Volume 8, issue 4
https://doi.org/10.5194/wes-8-621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical extrapolation of Advanced Scatterometer (ASCAT) ocean surface winds using machine-learning techniques
Department of Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Charlotte Bay Hasager
Department of Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Ioanna Karagali
Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark
Related authors
No articles found.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025, https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
Short summary
Due to the scarcity of offshore in situ observations, alternative data sources are essential for a reliable understanding of offshore winds. Therefore, this study delves into the world of satellite remote sensing (ASCAT) and numerical models (ERA5), exploring their capabilities and limitations in characterising offshore winds. This investigation evaluates these two datasets against measurements from a floating ship-based lidar, collected during a novel measurement campaign in the Baltic Sea.
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023, https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary
Short summary
Aeolus is a satellite equipped with a Doppler wind lidar to detect global wind profiles. This study evaluates the impact of Aeolus winds on surface wind forecasts over tropical oceans and high-latitude regions based on the ECMWF observing system experiments. We find that Aeolus can slightly improve surface wind forecasts for the region > 60° N, especially from day 5 onwards. For other study regions, the impact of Aeolus is nearly neutral or limited, which requires further investigation.
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023, https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary
Short summary
This paper presents a data-driven framework for modeling erosion damage based on real blade inspections and mesoscale weather data. The outcome of the framework is a machine-learning-based model that can predict and/or forecast leading-edge erosion damage based on weather data and user-specified wind turbine characteristics. The model output fits directly into the damage terminology used by the industry and can therefore support site-specific maintenance planning and scheduling of repairs.
Merete Badger, Haichen Zuo, Ásta Hannesdóttir, Abdalmenem Owda, and Charlotte Hasager
Wind Energ. Sci., 7, 2497–2512, https://doi.org/10.5194/wes-7-2497-2022, https://doi.org/10.5194/wes-7-2497-2022, 2022
Short summary
Short summary
When wind turbine blades are exposed to strong winds and heavy rainfall, they may be damaged and their efficiency reduced. The problem is most pronounced offshore where turbines are tall and the climate is harsh. Satellites provide global half-hourly rain observations. We use these rain data as input to a model for blade lifetime prediction and find that the satellite-based predictions agree well with predictions based on observations from weather stations on the ground.
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022, https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary
Short summary
Ice surface temperature (IST) products were used to develop the first multi-sensor, gap-free Level 4 (L4) IST product of the Greenland Ice Sheet (GIS) for 2012, when a significant melt event occurred. For the melt season, mean IST was −15 to −1 °C, and almost the entire GIS experienced at least 1 to 5 melt days. Inclusion of the L4 IST to a surface mass budget (SMB) model improved simulated surface temperatures during the key onset of the melt season, where biases are typically large.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Cited articles
Ahsbahs, T., Nygaard, N. G., Newcombe, A., and Badger, M.: Wind farm wakes from sar and doppler radar, Remote Sens., 12, 462, https://doi.org/10.3390/rs12030462,
2020. a
Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.:
Extrapolating satellite winds to turbine operating heights, J.
Appl. Meteorol. Clim., 55, 975–991,
https://doi.org/10.1175/JAMC-D-15-0197.1, 2016. a, b
Barthelmie, R. J. and Pryor, S.: Can satellite sampling of offshore wind speeds
realistically represent wind speed distributions?, J. Appl.
Meteorol., 42, 83–94,
https://doi.org/10.1175/1520-0450(2003)042<0083:CSSOOW>2.0.CO;2, 2003. a
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5
surface wind biases using ASCAT, Ocean Sci., 15, 831–852,
https://doi.org/10.5194/os-15-831-2019, 2019. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Bundesamt für Seeschifffahrt und Hydrographie: FINO – Datenbankinformationen – Forschungsplattformen in Nord- und Ostsee, http://fino.bsh.de, last access: 27 April 2023. a
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., and Callahan, P. S.:
Chapter 1 Satellite Altimetry, Int. Geophys., 69, 1–183,
https://doi.org/10.1016/S0074-6142(01)80146-7, 2001. a
Cheynet, E., Solbrekke, I. M., Diezel, J. M., and Reuder, J.: A one-year
comparison of new wind atlases over the North Sea, J. Phys.:
Conf. Ser., 2362, 012009,
https://doi.org/10.1088/1742-6596/2362/1/012009, 2022. a, b, c
Clifton, A., Clive, P., Gottschall, J., Schlipf, D., Simley, E., Simmons, L.,
Stein, D., Trabucchi, D., Vasiljevic, N., and Würth, I.: IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar, Remote Sens., 10, 406, https://doi.org/10.3390/rs10030406, 2018. a
CMEMS: Product User Manual for Baltic Sea SST Reprocessed products
SST_BAL_SST_L4_REP_OBSERVATIONS_010_016,
SST_BAL_PHY_L3S_MY_010_040, John Wiley & Sons, Ltd, https://doi.org/10.48670/moi-00156, 2022. a
de Kloe, J., Stoffelen, A., and Verhoef, A.: Improved Use of Scatterometer
Measurements by Using Stress-Equivalent Reference Winds, IEEE J.
Select. Top. Appl. Earth Obs. Remote Sens., 10,
2340–2347, https://doi.org/10.1109/JSTARS.2017.2685242, 2017. a
de Montera, L., Berger, H., Husson, R., Appelghem, P., Guerlou, L., and
Fragoso, M.: High-resolution offshore wind resource assessment at turbine hub
height with Sentinel-1 synthetic aperture radar (SAR) data and machine
learning, Wind Energ. Sci., 7, 1441–1453, https://doi.org/10.5194/wes-7-1441-2022, 2022. a, b, c
Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E.,
Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I.,
Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S.,
Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D.,
Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N.: The Global Ocean
Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot
Project, B. Am. Meteorol. Soc., 88, 1197–1214,
https://doi.org/10.1175/BAMS-88-8-1197, 2007. a, b
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M.,
Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the
New European Wind Atlas – Part 2: Production and evaluation, Geoscientific
Model Development, 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a, b
Gottschall, J., Gribben, B., Stein, D., and Würth, I.: Floating lidar as an
advanced offshore wind speed measurement technique: current technology status
and gap analysis in regard to full maturity, WIREs Energ. Environ., 146, 1999–2049, https://doi.org/10.1002/wene.250, 2017. a
Gottschall, J., Catalano, E., Dörenkämper, M., and Witha, B.: The
NEWA Ferry Lidar Experiment: Measuring mesoscalewinds in the Southern Baltic
Sea, Remote Sens., 10, 1–13, https://doi.org/10.3390/rs10101620, 2018. a, b
Haakenstad, H., Breivik, Ø., Furevik, B. R., Reistad, M., Bohlinger, P., and
Aarnes, O. J.: NORA3: A Nonhydrostatic High-Resolution Hindcast of the North
Sea, the Norwegian Sea, and the Barents Sea, J. Appl. Meteorol.
Clim., 60, 1443–1464, https://doi.org/10.1175/JAMC-D-21-0029.1, 2021. a
Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager, C. B.: Wind
climate estimation using WRF model output: method and model sensitivities
over the sea, Int. J. Climatol., 35, 3422–3439,
https://doi.org/10.1002/joc.4217, 2015. a
Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas – Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078,
https://doi.org/10.5194/gmd-13-5053-2020, 2020. a
Hasager, C. B., Hahmann, A. N., Ahsbahs, T., Karagali, I., Sile, T., Badger,
M., and Mann, J.: Europe's offshore winds assessed with synthetic aperture
radar, ASCAT and WRF, Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, 2020. a, b
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.: The elements
of statistical learning: data mining, inference, and prediction, in: vol. 2,
Springer, https://doi.org/10.1007/978-0-387-21606-5, 2009. a
Hatfield, D., Gottschall, J., and Hasager, C. B.: Stability information derived
from a floating lidar system using bulk Richardson formulation, J.
Phys.: Conf. Ser., 2265, 042024,
https://doi.org/10.1088/1742-6596/2265/4/042024, 2022a. a
Hatfield, D., Hasager, C. B., and Karagali, I.: Comparing Offshore Ferry LidarMeasurements in the Southern Baltic Sea with ASCAT, FINO2 and WRF, Remote Sens., 14, 1427, https://doi.org/10.3390/rs14061427, 2022b. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Høyer, J. L. and Karagali, I.: Sea Surface Temperature Climate Data Record for
the North Sea and Baltic Sea, J. Climate, 29, 2529–2541,
https://doi.org/10.1175/JCLI-D-15-0663.1, 2016. a
Høyer, J. L. and She, J.: Optimal interpolation of sea surface temperature for
the North Sea and Baltic Sea, J. Mar. Syst., 65, 176–189,
https://doi.org/10.1016/j.jmarsys.2005.03.008, 2007. a
Karagali, I., Peña, A., Badger, M., and Hasager, C. B.: Wind characteristics
in the North and Baltic Seas from the QuikSCAT satellite, Wind Energy, 17,
123–140, https://doi.org/10.1002/we.1565, 2014. a
Karagali, I., Badger, M., and Hasager, C. B.: ASCAT winds used for offshore
wind energy applications, in: Proceedings for the 2018 EUMETSAT Meteorological Satellite Conference, 17–21 September 2018, Tallinn, Estonia, 17–21,
https://www.eumetsat.int/eumetsat-meteorological-satellite-conference-2018
(last access: 27 April 2023), 2018a. a
Karagali, I., Hahmann, A. N., Badger, M., Hasager, C., and Mann, J.: Offshore
new European wind atlas, J. Phys.: Conf. Ser., 1037, 052007, https://doi.org/10.1088/1742-6596/1037/5/052007, 2018b. a
Kelly, M. and Gryning, S.-E.: Long-Term Mean Wind Profiles Based on Similarity
Theory, Bound.-Lay. Meteorol., 136, 377–390,
https://doi.org/10.1007/s10546-010-9509-9, 2010. a
Leiding, T., Tinz, B., Gates, L., Rosenhagen, G., Herklotz, K., Senet, C.,
Outzen, O., Lindenthal, A., Neumann, T., Frühmann, R., Wilts, F.,
Bégué, F., Schwenk, P., Stein, D., Bastigkeit, I., Bernhard,
Hagemann, L. S., Müller, S., and Schwabe, J.: Standardisierung und
vergleichende Analyse der meteorologischen FINO-Messdaten (FINO123), Tech.
rep., Deutscher Wetterdienst,
https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimaueberwachung/finowind/finodoku/abschlussbericht_pdf.pdf?__blob=publicationFile&v=3
(last access: 27 April 2023), 2016. a
MacAskill, A. and Mitchell, P.: Offshore wind – an overview, WIREs Energ.
Environ., 2, 374–383, https://doi.org/10.1002/wene.30, 2013. a
Martin, S.: An Introduction to Ocean Remote Sensing, in: 2nd Edn., Cambridge University Press, https://doi.org/10.1017/CBO9781139094368, 2014. a
Misra, T., Chakraborty, P., Lad, C., Gupta, P., Rao, J., Upadhyay, G., Kumar,
S., Kumar, B., Gangele, S., Sinha, S., Tolani, H., Vithani, V., Raman, B.,
N Rao, C., Dave, D., Jyoti, R., and Desai, N.: SCATSAT-1 Scatterometer:An
Improved Successor of OSCAT, Current Sci., 117, 941, https://doi.org/10.18520/cs/v117/i6/941-949, 2019. a
Mohandes, M. A. and Rehman, S.: Wind speed extrapolation using machine learning
methods and LiDAR measurements, IEEE Access, 6, 77634–77642,
https://doi.org/10.1109/ACCESS.2018.2883677, 2018. a, b, c
Norwegian Meteorological Institute: Catalog, https://thredds.met.no/thredds/catalog/nora3/catalog.html, last access: 27 April 2023. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pena Diaz, A., Hahmann, A., Hasager, C., Bingöl, F., Karagali, I.,
Badger, J., Badger, M., and Clausen, N.-E.: South Baltic Wind Atlas: South
Baltic Offshore Wind Energy Regions Project, no. 1775(EN) in Denmark,
Forskningscenter Risoe, Risoe-R, Danmarks Tekniske Universitet, Risø
Nationallaboratoriet for Bæredygtig Energi, ISBN 978-87-550-3899-8,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/5578113/ris-r-1775.pdf
(last access: 27 April 2023), 2011. a
Remmers, T., Cawkwell, F., Desmond, C., Murphy, J., and Politi, E.: The
potential of advanced scatterometer (ASCAT) 12.5 km coastal observations for
offshore wind farm site selection in Irish waters, Energies, 12, 206,
https://doi.org/10.3390/en12020206, 2019. a
Rivas, M. B., Stoffelen, A., Verspeek, J., Verhoef, A., Neyt, X., and Anderson,
C.: Cone Metrics: A New Tool for the Intercomparison of Scatterometer
Records, IEEE J. Select. Top. Appl. Earth Obs.
Remote Sens., 10, 2195–2204, https://doi.org/10.1109/JSTARS.2017.2647842, 2017. a
Rubio, H., Kühn, M., and Gottschall, J.: Evaluation of low-level jets in the southern Baltic Sea: a comparison between ship-based lidar observational data and numerical models, Wind Energ. Sci., 7, 2433–2455,
https://doi.org/10.5194/wes-7-2433-2022, 2022. a
Solbrekke, I. M., Sorteberg, A., and Haakenstad, H.: The 3 km Norwegian
reanalysis (NORA3) – a validation of offshore wind resources in the North
Sea and the Norwegian Sea, Wind Energ. Sci., 6, 1501–1519,
https://doi.org/10.5194/wes-6-1501-2021, 2021. a
Stoffelen, A., Verspeek, J. A., Vogelzang, J., and Verhoef, A.: The CMOD7
Geophysical Model Function for ASCAT and ERS Wind Retrievals, IEEE J.
of Select. Top. Appl. Earth Obs. Remote Sens., 10,
2123–2134, https://doi.org/10.1109/JSTARS.2017.2681806, 2017. a
Stoffelen, A. C. M.: Error modelling of scatterometer, in-situ, and ECMWF model winds: A calibration refinement, KNMI, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR193.pdf (last access: 27 April 2023), 1996. a
Türkan, Y. S., Aydoğmuş, H. Y., and Erdal, H.: The prediction
of the wind speed at different heights by machine learning methods,
Int. J. Optimiz. Control: Theor. Appl., 6, 179–187, https://doi.org/10.11121/ijocta.01.2016.00315, 2016. a, b
Verhoef, A., Vogelzang, J., Verspeek, J., and Stoffelen, A.: Long-Term
Scatterometer Wind Climate Data Records, IEEE J. Select. Top.
Appl. Earth Obs. Remote Sens., 10, 2186–2194,
https://doi.org/10.1109/JSTARS.2016.2615873, 2017.
a
Vogelzang, J., Stoffelen, A., Lindsley, R. D., Verhoef, A., and Verspeek, J.:
The ASCAT 6.25-km Wind Product, IEEE J. Select. Top. Appl.
Earth Obs. Remote Sens., 10, 2321–2331,
https://doi.org/10.1109/JSTARS.2016.2623862, 2017. a
Wang, Z., Stoffelen, A., Zhang, B., He, Y., Lin, W., and Li, X.:
Inconsistencies in scatterometer wind products based on ASCAT and OSCAT-2
collocations, Remote Sens. Environ., 225, 207–216,
https://doi.org/10.1016/j.rse.2019.03.005, 2019. a
Witha, B., Hahmann, A., Sile, T., Dörenkämper, M., Ezber, Y.,
García-Bustamante, E., González-Rouco, J. F., Leroy, G., and Navarro, J.:
WRF model sensitivity studies and specifications for the NEWA mesoscale wind
atlas production runs, Zenodo [data set], https://doi.org/10.5281/zenodo.2682604, 2019. a, b
Zhao, K., Zhao, C., and Chen, G.: Evaluation of Chinese Scatterometer Ocean
Surface Wind Data: Preliminary Analysis, Earth Space Sci., 8, e2020EA001482, https://doi.org/10.1029/2020EA001482, 2021. a
Zhu, B., Chen, J., Xu, Y., Zheng, Q., and Li, X.: Validation of the CFOSAT
Scatterometer Data With Buoy Observations and Tests of Operational Application to Extreme Weather Forecasts in Taiwan Strait, Earth Space Sci., 9, e2021EA001865, https://doi.org/10.1029/2021EA001865, 2022. a
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m...
Altmetrics
Final-revised paper
Preprint