Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-297-2024
https://doi.org/10.5194/wes-9-297-2024
Research article
 | 
05 Feb 2024
Research article |  | 05 Feb 2024

TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows

Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff

Related authors

The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024,https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
A large-eddy simulation (LES) model for wind-farm-induced atmospheric gravity wave effects inside conventionally neutral boundary layers
Sebastiano Stipa, Mehtab Ahmed Khan, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 1647–1668, https://doi.org/10.5194/wes-9-1647-2024,https://doi.org/10.5194/wes-9-1647-2024, 2024
Short summary
The multi-scale coupled model: a new framework capturing wind farm–atmosphere interaction and global blockage effects
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 1123–1152, https://doi.org/10.5194/wes-9-1123-2024,https://doi.org/10.5194/wes-9-1123-2024, 2024
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Sebastiano Stipa, Arjun Ajay, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 2301–2332, https://doi.org/10.5194/wes-9-2301-2024,https://doi.org/10.5194/wes-9-2301-2024, 2024
Short summary
Understanding the impact of data gaps on long-term offshore wind resource estimates
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024,https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Converging profile relationships for offshore wind speed and turbulence intensity
Gus Jeans
Wind Energ. Sci., 9, 2001–2015, https://doi.org/10.5194/wes-9-2001-2024,https://doi.org/10.5194/wes-9-2001-2024, 2024
Short summary
A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024,https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Influences of lidar scanning parameters on wind turbine wake retrievals in complex terrain
Rachel Robey and Julie K. Lundquist
Wind Energ. Sci., 9, 1905–1922, https://doi.org/10.5194/wes-9-1905-2024,https://doi.org/10.5194/wes-9-1905-2024, 2024
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms, Energies, 6, 2338–2361, https://doi.org/10.3390/en6052338, 2013. a, b, c, d
Ahsbahs, T., Nygaard, N. G., Newcombe, A., and Badger, M.: Wind Farm Wakes from SAR and Doppler Radar, Remote Sensing, 12, 462, https://doi.org/10.3390/rs12030462, 2020. a
Ainslie, J.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a
Allaerts, D.: PhD Thesis: Large-eddy Simulation of Wind Farms in Conventionally Neutral and Stable Atmospheric Boundary Layers, Tech. rep., KU Leuven, https://lirias.kuleuven.be/1731391&lang=en (last access: 1 November 2022), 2016. a, b, c
Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a, b
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In the current study, we introduce TOSCA (Toolbox fOr Stratified Convective Atmospheres), an open-source computational fluid dynamics (CFD) tool, and demonstrate its capabilities by simulating the flow around a large wind farm, operating in realistic flow conditions. This is one of the grand challenges of the present decade and can yield better insight into physical phenomena that strongly affect wind farm operation but which are not yet fully understood.
Altmetrics
Final-revised paper
Preprint