Articles | Volume 10, issue 1
https://doi.org/10.5194/wes-10-143-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-143-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation
Farkhondeh (Hanie) Rouholahnejad
CORRESPONDING AUTHOR
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Julia Gottschall
Fraunhofer Institute for Wind Energy Systems (IWES), Am Seedeich 45, 27572 Bremerhaven, Germany
Related authors
No articles found.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech., 18, 4949–4968, https://doi.org/10.5194/amt-18-4949-2025, https://doi.org/10.5194/amt-18-4949-2025, 2025
Short summary
Short summary
Due to the scarcity of offshore in situ observations, alternative data sources are essential for a reliable understanding of offshore winds. Therefore, this study delves into the world of satellite remote sensing (ASCAT) and numerical models (ERA5), exploring their capabilities and limitations in characterising offshore winds. This investigation evaluates these two datasets against measurements from a floating ship-based lidar, collected during a novel measurement campaign in the Baltic Sea.
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45, https://doi.org/10.5194/wes-2025-45, 2025
Preprint under review for WES
Short summary
Short summary
In this study, we compare turbulence intensity measurements from two buoy-mounted wind lidars with data from a fixed lidar and a meteorological mast. Turbulence intensity is essential for understanding wind conditions but is often overestimated by floating systems due to wave motion. We applied a physics-based compensation to reduce these effects. Our findings show that motion compensation significantly improves accuracy, making floating lidar systems suitable for offshore wind site assessments.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Cited articles
Argyle, P. and Watson, S.: Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations, J. Wind Eng. Indust. Aerodynam., 131, 88–99, https://doi.org/10.1016/j.jweia.2014.06.002, 2014. a
Bett, P. E., Thornton, H. E., and Clark, R. T.: European wind variability over 140 yr, Adv. Sci. Res., 10, 51–58, https://doi.org/10.5194/asr-10-51-2013, 2013. a
Bodini, N. and Optis, M.: How accurate is a machine learning-based wind speed extrapolation under a round-robin approach?, J. Phys.: Conf. Ser., 1618, 062037, https://doi.org/10.1088/1742-6596/1618/6/062037, 2020a. a
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Cañadillas, B., Beckenbauer, M., Trujillo, J. J., Dörenkämper, M., Foreman, R., Neumann, T., and Lampert, A.: Offshore wind farm cluster wakes as observed by long-range-scanning wind lidar measurements and mesoscale modeling, Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, 2022. a
Carbon Trust: OWA roadmap for the commercial acceptance of floating LiDAR technology, https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/roadmap-for-commercial-acceptance-of-floating-lidar (last access: 22 July 2024), 2024. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site, Renew. Sustain. Energ. Rev., 27, 362–400, https://doi.org/10.1016/j.rser.2013.07.004, 2013. a, b
DNVGL: Assessment of the Fugro Seawatch Wind LiDAR Buoy WS 191 Pre-Deployment Validation at Frøya, Norway, https://offshorewind.rvo.nl/file/download/26ae4742-2148-4748-ab4a-7a56a961b982/1575890079tnw_20191209_mc_validation ws191-f.pdf (last access: 19 December 2023), 2023. a
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020. a, b, c
Gottschall, J., Gribben, B., Stein, D., and Würth, I.: Floating lidar as an advanced offshore wind speed measurement technique: current technology status and gap analysis in regard to full maturity, WIREs Energ. Environ., 6, e250, https://doi.org/10.1002/wene.250, 2017. a
Grachev, A. A. and Fairall, C. W.: Dependence of the Monin–Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean, J. Appl. Meteorol., 36, 406–414, https://doi.org/10.1175/1520-0450(1997)036<0406:DOTMOS>2.0.CO;2, 1997. a
Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager, C. B.: Wind climate estimation using WRF model output: method and model sensitivities over the sea, Int. J. Climatol., 35, 3422–3439, https://doi.org/10.1002/joc.4217, 2015. a
Hallgren, C., Aird, J. A., Ivanell, S., Körnich, H., Vakkari, V., Barthelmie, R. J., Pryor, S. C., and Sahlée, E.: Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data, Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, 2024. a, b, c
Hatfield, D., Hasager, C. B., and Karagali, I.: Vertical extrapolation of Advanced Scatterometer (ASCAT) ocean surface winds using machine-learning techniques, Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, 2023. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023. a, b
IEC: 61400-1: Wind energy generation systems – Part 1: Design requirements, Geneva, 4.0 Edn., https://webstore.iec.ch/en/publication/26423 (last access: 14 January 2025), 2019. a
Iribarne, J. V. and Godson, W. L.: Thermodynamic Processes in the Atmosphere, Springer Netherlands, Dordrecht, 97–132, ISBN 978-94-017-0815-9, https://doi.org/10.1007/978-94-017-0815-9_6, 1973. a
Lee, J. C. Y. and Fields, M. J.: An overview of wind-energy-production prediction bias, losses, and uncertainties, Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021, 2021. a
Lente, G. and Ősz, K.: Barometric formulas: various derivations and comparisons to environmentally relevant observations, ChemTexts, 6, 13, https://doi.org/10.1007/s40828-020-0111-6, 2020. a
Liu, B., Ma, X., Guo, J., Li, H., Jin, S., Ma, Y., and Gong, W.: Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment, Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, 2023. a
Liu, B., Ma, X., Guo, J., Wen, R., Li, H., Jin, S., Ma, Y., Guo, X., and Gong, W.: Extending the wind profile beyond the surface layer by combining physical and machine learning approaches, Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, 2024. a
Meyer, P. J. and Gottschall, J.: How do NEWA and ERA5 compare for assessing offshore wind resources and wind farm siting conditions?, J. Phys.: Conf. Ser., 2151, 012009, https://doi.org/10.1088/1742-6596/2151/1/012009, 2022. a, b, c
Milan, P., Morales, A., Wächter, M., and Peinke, J.: Wind Energy: A Turbulent, Intermittent Resource, in: Wind Energy – Impact of Turbulence, edited by: Hölling, M., Peinke, J., and Ivanell, S., Springer, Berlin, Heidelberg, 73–78, ISBN 978-3-642-54696-9, 2014. a
Mohandes, M. A. and Rehman, S.: Wind Speed Extrapolation Using Machine Learning Methods and LiDAR Measurements, IEEE Access, 6, 77634–77642, https://doi.org/10.1109/ACCESS.2018.2883677, 2018. a
Motta, M., Barthelmie, R. J., and Vølund, P.: The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites, Wind Energy, 8, 219–236, https://doi.org/10.1002/we.146, 2005. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Roebroek, J.: sklearn-quantile: A Python library for quantile machine learning models for python, https://pypi.org/project/sklearn-quantile/ (last access: 15 December 2023), 2022. a
Rogers, A. L., Rogers, J. M., and Manwell, J.: Comparison of the performance of four measure–correlate–predict algorithms, J. Wind Eng. Indust. Aerodyn., 93, 243–264, 2005. a
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich, S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M., Steffen, J., Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske, J.: Powering the 21st century by wind energy – Options, facts, figures, Appl. Phys. Rev., 6, 031303, https://doi.org/10.1063/1.5089877, 2019. a
Rouholahnejad, F., Santos, P., Hung, L.-Y., and Gottschall, J.: Machine learning for predicting offshore vertical wind profiles, J. Phys.: Conf. Ser., 2626, 012023, https://doi.org/10.1088/1742-6596/2626/1/012023, 2023. a
Rubio, H., Kühn, M., and Gottschall, J.: Evaluation of low-level jets in the southern Baltic Sea: a comparison between ship-based lidar observational data and numerical models, Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, 2022. a
Schwegmann, S., Faulhaber, J., Pfaffel, S., Yu, Z., Dörenkämper, M., Kersting, K., and Gottschall, J.: Enabling Virtual Met Masts for wind energy applications through machine learning-methods, Energy AI, 11, 100209, https://doi.org/10.1016/j.egyai.2022.100209, 2023. a
Strack, M., Foussekis, D., Cantero, E., Mönnich, K., Mortensen, N., Müller, S., Ortiz, D., Guetschow, A., and Schmidt, F.: MEASNET Procedure “Evaluation of Site-Specific Wind Conditions” Released, 25–25, http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf (last access: 23 December 2023), 2010. a, b
Stull, R.: Errata, Springer Netherlands, Dordrecht, 175–180, ISBN 978-94-009-3027-8, https://doi.org/10.1007/978-94-009-3027-8_15, 1988. a, b, c
Vassallo, D., Krishnamurthy, R., and Fernando, H. J. S.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection, Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020, 2020. a
Yu, S. and Vautard, R.: A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning, Renew. Sustain. Energ. Rev., 169, 112897, https://doi.org/10.1016/j.rser.2022.112897, 2022. a
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch...
Altmetrics
Final-revised paper
Preprint