Articles | Volume 10, issue 1
https://doi.org/10.5194/wes-10-143-2025
https://doi.org/10.5194/wes-10-143-2025
Research article
 | 
15 Jan 2025
Research article |  | 15 Jan 2025

Characterization of local wind profiles: a random forest approach for enhanced wind profile extrapolation

Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall

Related authors

Editorial: Celebrating the first decade of Wind Energy Science
Carlo L. Bottasso, Sandrine Aubrun, Nicolaos A. Cutululis, Julia Gottschall, Athanasios Kolios, Jakob Mann, and Paul Veers
Wind Energ. Sci., 11, 347–348, https://doi.org/10.5194/wes-11-347-2026,https://doi.org/10.5194/wes-11-347-2026, 2026
Short summary
Airborne measurements for investigating offshore wind farm wakes and modifications of sea state – benefits and limitations
Astrid Lampert, Beatriz Cañadillas, Thomas Rausch, Lea Schmitt, Bughsin' Djath, Johannes Schulz-Stellenfleth, Andreas Platis, Kjell zum Berge, Ines Schäfer, Jens Bange, Thomas Neumann, Martin Dörenkämper, Bernhard Stoevesandt, Julia Gottschall, Lukas Vollmer, Stefan Emeis, Mares Barekzai, Simon Siedersleben, Martin Kühn, Gerald Steinfeld, Detlev Heinemann, Joachim Peinke, Hendrik Heißelmann, Jörge Schneemann, Gabriele Centurelli, Philipp Waldmann, and Konrad Bärfuss
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-277,https://doi.org/10.5194/wes-2025-277, 2026
Preprint under review for WES
Short summary
Impact of Boundary Layer Height and Large-Scale Turbulence on the Efficiency and Loads of Offshore Wind Farms
Stefan Ivanell, Bjarke T. Olsen, Antoine Mathieu, Cristina Mulet-Benzo, Abdul Haseeb Syed, Warit Chanprasert, Mikael Sjöholm, Jakob Mann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-286,https://doi.org/10.5194/wes-2025-286, 2026
Preprint under review for WES
Short summary
Evaluating the impact of motion compensation on turbulence intensity measurements from continuous-wave and pulsed floating lidars
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci., 10, 2791–2820, https://doi.org/10.5194/wes-10-2791-2025,https://doi.org/10.5194/wes-10-2791-2025, 2025
Short summary
Comparing atmospheric boundary layer heights from vertical profiling scanning lidars to ERA5 and WRF
Cristina Mulet-Benzo, Andrew Black, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-155,https://doi.org/10.5194/wes-2025-155, 2025
Revised manuscript under review for WES
Short summary

Cited articles

Argyle, P. and Watson, S.: Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations, J. Wind Eng. Indust. Aerodynam., 131, 88–99, https://doi.org/10.1016/j.jweia.2014.06.002, 2014. a
Bett, P. E., Thornton, H. E., and Clark, R. T.: European wind variability over 140 yr, Adv. Sci. Res., 10, 51–58, https://doi.org/10.5194/asr-10-51-2013, 2013. a
Bodini, N. and Optis, M.: How accurate is a machine learning-based wind speed extrapolation under a round-robin approach?, J. Phys.: Conf. Ser., 1618, 062037, https://doi.org/10.1088/1742-6596/1618/6/062037, 2020a. a
Bodini, N. and Optis, M.: The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds, Wind Energ. Sci., 5, 489–501, https://doi.org/10.5194/wes-5-489-2020, 2020b. a, b, c, d, e, f
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a
Download
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Share
Altmetrics
Final-revised paper
Preprint