Articles | Volume 6, issue 5
https://doi.org/10.5194/wes-6-1247-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-1247-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FAST.Farm load validation for single wake situations at alpha ventus
Matthias Kretschmer
CORRESPONDING AUTHOR
Stuttgart Wind Energy (SWE) at Institute of Aircraft Design, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
Jason Jonkman
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
Vasilis Pettas
Stuttgart Wind Energy (SWE) at Institute of Aircraft Design, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
Po Wen Cheng
Stuttgart Wind Energy (SWE) at Institute of Aircraft Design, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
Related authors
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Veronica Liverud Krathe, Jason Jonkman, and Erin Elizabeth Bachynski-Polić
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-92, https://doi.org/10.5194/wes-2025-92, 2025
Preprint under review for WES
Short summary
Short summary
This study looks into how changes in wind direction with height and drivetrain flexibility influence the behavior of large floating wind turbines. Using numerical simulations, it was found that these factors can significantly impact the lifetime of the turbines. These results suggest that standardized design methods may underestimate fatigue and that improved modeling could enhance turbine reliability as turbines continue to grow in size.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci., 10, 1033–1053, https://doi.org/10.5194/wes-10-1033-2025, https://doi.org/10.5194/wes-10-1033-2025, 2025
Short summary
Short summary
We investigate asymmetries in terms of power performance and fatigue loading on a five-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintaining good power gains and show that a partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 10, 941–970, https://doi.org/10.5194/wes-10-941-2025, https://doi.org/10.5194/wes-10-941-2025, 2025
Short summary
Short summary
Numerical models, used to assess loads on floating offshore wind turbines, require many input parameters to describe air and water conditions, system properties, and load calculations. All parameters have some possible range, due to uncertainty and/or variations with time. The selected values can have important effects on the uncertainty in the resulting loads. This work identifies the input parameters that have the most impact on ultimate and fatigue loads for extreme storm load cases.
Katarzyna Patryniak, Maurizio Collu, Jason Jonkman, Matthew Hall, Garrett Barter, Daniel Zalkind, and Andrea Coraddu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-167, https://doi.org/10.5194/wes-2024-167, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This paper studies the Instantaneous Centre of Rotation (ICR) of Floating Offshore Wind Turbines (FOWTs). We present a method for computing the ICR and examine the correlations between the external loading, design features, ICR statistics, motions, and loads. We demonstrate how to apply the new insights to successfully modify the designs of the spar and semisubmersible FOWTs to reduce the loads in the moorings, the tower, and the blades, improving the ultimate strength and fatigue properties.
Moritz Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci., 9, 2175–2193, https://doi.org/10.5194/wes-9-2175-2024, https://doi.org/10.5194/wes-9-2175-2024, 2024
Short summary
Short summary
This study explores a methodology using floater motion and nacelle-based lidar wind speed measurements to estimate the tension and damage equivalent loads (DELs) on floating offshore wind turbines' mooring lines. Results indicate that fairlead tension time series and DELs can be accurately estimated from floater motion time series. Using lidar measurements as model inputs for DEL predictions leads to similar accuracies as using displacement measurements of the floater.
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024, https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
Short summary
As climate change increasingly impacts our daily lives, a transition towards cleaner energy is needed. With all the growth in floating offshore wind and the planned floating wind farms (FWFs) in the next few years, we urgently need new techniques and methodologies to accommodate the differences between the fixed bottom and FWFs. This paper presents a novel methodology to decrease aerodynamic losses inside an FWF by passively relocating the downwind floating wind turbines out of the wakes.
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024, https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
Short summary
Large direct-drive wind turbines, with a multi-megawatt power rating, face design challenges. Moving towards a more system-oriented design approach could potentially reduce mass and costs. Exploiting the full design space, though, may invoke interaction mechanisms, which have been neglected in the past. Based on coupled simulations, this work derives a better understanding of the electro-mechanical interaction mechanisms and identifies potential for design relevance.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Qi Pan, Dexing Liu, Feng Guo, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-44, https://doi.org/10.5194/wes-2024-44, 2024
Preprint withdrawn
Short summary
Short summary
The floating wind market is striving to scale up from a handful of prototypes to gigawatt-scale capacity, despite facing barriers of high costs in the deep-sea deployment. Shared mooring is promising in reducing material costs. This paper introduces a comprehensive design methodology for reliable shared mooring line configurations, and reveals their potential for cost-saving and power enhancement. These findings contribute to achieving cost-effective solutions for floating wind farms.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024, https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary
Short summary
This paper provides a comparison for a floating offshore wind turbine between the motion and loading estimated by numerical models and measurements. The floating support structure is a novel design that includes a counterweight to provide floating stability to the system. The comparison between numerical models and the measurements includes system motion, tower loads, mooring line loads, and loading within the floating support structure.
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024, https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary
Short summary
Integrating a tuned liquid multi-column damping (TLMCD) into a floating offshore wind turbine (FOWT) is challenging. The synergy between the TLMCD, the turbine controller, and substructure dynamics affects the FOWT's performance and cost. A control co-design optimization framework is developed to optimize the substructure, the TLMCD, and the blade pitch controller simultaneously. The results show that the optimization can significantly enhance FOWT system performance.
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024, https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary
Short summary
Understanding the underlying physical phenomena of the aerodynamics of floating offshore wind turbines (FOWTs) is crucial for successful simulations. No consensus has been reached in the research community on which unsteady aerodynamic phenomena are relevant and how much they can influence the loads acting on a FOWT. This work contributes to the understanding and characterisation of such unsteady phenomena using a novel experimental approach and comprehensive numerical investigations.
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Short summary
In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore wind turbine. The article present methods to obtain reduced-order models of floating wind turbines. The models are used to form a digital twin which combines measurements from the TetraSpar prototype (a full-scale floating offshore wind turbine) to estimate signals that are not typically measured.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Will Wiley, Jason Jonkman, Amy Robertson, and Kelsey Shaler
Wind Energ. Sci., 8, 1575–1595, https://doi.org/10.5194/wes-8-1575-2023, https://doi.org/10.5194/wes-8-1575-2023, 2023
Short summary
Short summary
A sensitivity analysis determined the modeling parameters for an operating floating offshore wind turbine with the biggest impact on the ultimate and fatigue loads. The loads were the most sensitive to the standard deviation of the wind speed. Ultimate and fatigue mooring loads were highly sensitive to the current speed; only the fatigue mooring loads were sensitive to wave parameters. The largest platform rotation was the most sensitive to the platform horizontal center of gravity.
Paula Doubrawa, Kelsey Shaler, and Jason Jonkman
Wind Energ. Sci., 8, 1475–1493, https://doi.org/10.5194/wes-8-1475-2023, https://doi.org/10.5194/wes-8-1475-2023, 2023
Short summary
Short summary
Wind turbines are designed to withstand any wind conditions they might encounter. This includes high-turbulence flow fields found within wind farms due to the presence of the wind turbines themselves. The international standard allows for two ways to account for wind farm turbulence in the design process. We compared both ways and found large differences between them. To avoid overdesign and enable a site-specific design, we suggest moving towards validated, higher-fidelity simulation tools.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 8, 149–171, https://doi.org/10.5194/wes-8-149-2023, https://doi.org/10.5194/wes-8-149-2023, 2023
Short summary
Short summary
The benefits of lidar-assisted control are evaluated using both the Mann model and Kaimal model-based 4D turbulence, considering the variation of turbulence parameters. Simulations are performed for the above-rated mean wind speed, using the NREL 5.0 MW reference wind turbine and a four-beam lidar system. Using lidar-assisted control reduces the variations in rotor speed, pitch rate, tower base fore–aft bending moment, and electrical power significantly.
Kelsey Shaler, Amy N. Robertson, and Jason Jonkman
Wind Energ. Sci., 8, 25–40, https://doi.org/10.5194/wes-8-25-2023, https://doi.org/10.5194/wes-8-25-2023, 2023
Short summary
Short summary
This work evaluates which wind-inflow- and wake-related parameters have the greatest influence on fatigue and ultimate loads for turbines in a small wind farm. Twenty-eight parameters were screened using an elementary effects approach to identify the parameters that lead to the largest variation in these loads of each turbine. The findings show the increased importance of non-streamwise wind components and wake parameters in fatigue and ultimate load sensitivity of downstream turbines.
Konstanze Kölle, Tuhfe Göçmen, Irene Eguinoa, Leonardo Andrés Alcayaga Román, Maria Aparicio-Sanchez, Ju Feng, Johan Meyers, Vasilis Pettas, and Ishaan Sood
Wind Energ. Sci., 7, 2181–2200, https://doi.org/10.5194/wes-7-2181-2022, https://doi.org/10.5194/wes-7-2181-2022, 2022
Short summary
Short summary
The paper studies wind farm flow control (WFFC) in simulations with variable electricity prices. The results indicate that considering the electricity price in the operational strategy can be beneficial with respect to the gained income compared to focusing on the power gain only. Moreover, revenue maximization by balancing power production and structural load reduction is demonstrated at the example of a single wind turbine.
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Short summary
This paper summarizes efforts done to understand the impact of design parameter variations in the physical system (e.g., mass, stiffness, geometry, aerodynamic, and hydrodynamic coefficients) on the linearized system using OpenFAST in support of the development of the WEIS toolset to enable controls co-design of floating offshore wind turbines.
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558, https://doi.org/10.5194/wes-7-539-2022, https://doi.org/10.5194/wes-7-539-2022, 2022
Short summary
Short summary
Lidar-assisted control of wind turbines requires a wind field generator capable of simulating wind evolution. Out of this need, we extend the Veers method for 3D wind field generation to 4D and propose a two-step Cholesky decomposition approach. Based on this, we develop a 4D wind field generator – evoTurb – coupled with TurbSim and Mann turbulence generator. We further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide practical suggestions.
Emmanuel Branlard, Ian Brownstein, Benjamin Strom, Jason Jonkman, Scott Dana, and Edward Ian Baring-Gould
Wind Energ. Sci., 7, 455–467, https://doi.org/10.5194/wes-7-455-2022, https://doi.org/10.5194/wes-7-455-2022, 2022
Short summary
Short summary
In this work, we present an aerodynamic tool that can model an arbitrary collections of wings, blades, rotors, and towers. With these functionalities, the tool can be used to study and design advanced wind energy concepts, such as horizontal-axis wind turbines, vertical-axis wind turbines, kites, or multi-rotors. This article describes the key features of the tool and presents multiple applications. Field measurements of horizontal- and vertical-axis wind turbines are used for comparison.
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021, https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Short summary
This study aims to quantify the effect of inter-farm interactions based on long-term measurement data from the Alpha Ventus (AV) wind farm and the nearby FINO1 platform. AV was initially the only operating farm in the area, but in subsequent years several farms were built around it. This setup allows us to quantify the farm wake effects on the microclimate of AV and also on turbine loads and operational characteristics depending on the distance and size of the neighboring farms.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Yiyin Chen, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 6, 61–91, https://doi.org/10.5194/wes-6-61-2021, https://doi.org/10.5194/wes-6-61-2021, 2021
Short summary
Short summary
Wind evolution is currently of high interest, mainly due to the development of lidar-assisted wind turbine control (LAC). Moreover, 4D stochastic wind field simulations can be made possible by integrating wind evolution into 3D simulations to provide a more realistic simulation environment for LAC. Motivated by these factors, we investigate the potential of Gaussian process regression in the parameterization of a two-parameter wind evolution model using data of two nacelle-mounted lidars.
Cited articles
BSH (Bundesamt für Seeschifffahrt und Hydrographie):
RAVE measurement database [data set],
available at: https://www.bsh.de/EN/TOPICS/Monitoring_systems/MARNET_monitoring_network/RAVE/rave_node.html (last access: 3 May 2021), 2021. a
Conti, D., Dimitrov, N., Peña, A., and Herges, T.: Calibration and validation of the Dynamic Wake Meandering model Part I: Bayesian estimation of model parameters using SpinnerLidar-derived wake characteristics, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2020-135, in review, 2021. a
Davenport, A. G.:
The spectrum of horizontal gustiness near the ground in high winds,
Q. J. Roy. Meteor. Soc.,
87, 194–211, https://doi.org/10.1002/qj.49708737208, 1961. a
Doubrawa, P., Annoni, J. R., and Jonkman, J. M.:
Optimization-Based Calibration of FAST.Farm Parameters against Large-Eddy Simulations,
in: 2018 Wind Energy Symposium, American Institute of Aeronautics and Astronautics, 8–12 January 2018, Kissimmee, Florida, https://doi.org/10.2514/6.2018-0512, 2018. a
Doubrawa, P., Quon, E. W., Martinez-Tossas, L. A., Shaler, K., Debnath, M., Hamilton, N., Herges, T. G., Maniaci, D., Kelley, C. L., Hsieh, A. S., Blaylock, M. L., Laan, P., Andersen, S. J., Krueger, S., Cathelain, M., Schlez, W., Jonkman, J., Branlard, E., Steinfeld, G., Schmidt, S., Blondel, F., Lukassen, L. J., and Moriarty, P.:
Multimodel validation of single wakes in neutral and stratified atmospheric conditions,
Wind Energy,
23, 2027–2055, https://doi.org/10.1002/we.2543, 2020. a
DTU Wind Energy:
Mann 64bit turbulence generator,
available at: https://www.hawc2.dk/Download/Pre-processing-tools/Mann-64bit-turbulence-generator (last access: 13 April 2021), 2021. a
IEC:
61400-1 Ed. 4: Wind energy generation systems – Part 1: Design requirements, Standard,
International Electrotechnical Commission, Geneva, Switzerland, 2019. a
Jonkman, B.:
TurbSim User's Guide v1.50, Tech. Rep. NREL/TP-500-46198,
National Renewable Energy Laboratory, Golden, CO, 2009. a
Jonkman, B., Mudafort, R. M., Platt, A., Sprague, M., Vijayakumar, G., Buhl, M., Ananthan, S., Masciola, M., Schmidt, M. J., Branlard, E., jjonkman, Rood, J., rdamiani, ashesh2512, Bendl, K., pschuenemann, psakievich, KUSUNO, N., Martinez, T., robynnemurrayNREL, Mertz, B., Mylonas, C., IAbda, Rinker, J., Friedrich, M., Bachant, P., Hammond, R., lapadron, lssraman, mattEhall, and Kretschmer, M.:
MatthiasCK/OpenFAST: FAST.Farm with wake-added turbulence,
Zenodo [code], https://doi.org/10.5281/zenodo.4733599, 2021. a
Jonkman, J. and Shaler, K.:
FAST.Farm User's Guide and Theory Manual, Tech. Rep. NREL/TP-5000-78485,
National Renewable Energy Laboratory, Golden, CO, 2021. a
Jonkman, J., Annoni, J., Hayman, G., Jonkman, B., and Purkayastha, A.:
Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis,
in: AIAA Scitech 2017 Forum, 9–13 January 2017, Grapevine, Texas, https://doi.org/10.2514/6.2017-0454, 2017. a
Kaufer, D. and Cheng, P. W.: Validation of an integrated simulation method with high resolution load measurements of the offshorewind turbine REpower 5M at Alpha Ventus, Journal of Ocean and Wind Energy, 1, 30–40, 2014. a
Keck, R.-E., de Maré, M. T., Churchfield, M. J., Lee, S., Larsen, G. C., and Aagaard Madsen, H.:
On atmospheric stability in the dynamic wake meandering model,
Wind Energy,
17, 1689–1710, https://doi.org/10.1002/we.1662, 2014. a, b
Keck, R. E., De Maré, M., Churchfield, M. J., Lee, S., Larsen, G., and Madsen, H. A.:
Two improvements to the dynamic wake meandering model: Including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines,
Wind Energy,
18, 111–132, https://doi.org/10.1002/we.1686, 2015. a
Kelly, M.: From standard wind measurements to spectral characterization: turbulence length scale and distribution, Wind Energ. Sci., 3, 533–543, https://doi.org/10.5194/wes-3-533-2018, 2018. a
Larsen, G. C., Madsen, H. A., Thomsen, K., and Larsen, T. J.:
Wake meandering: a pragmatic approach,
Wind Energy,
11, 377–395, https://doi.org/10.1002/we.267, 2008. a, b, c, d
Larsen, T., Larsen, G., Pedersen, M., Enevoldsen, K., and Madsen, H.:
Validation of the Dynamic Wake Meander model with focus on tower loads,
J. Phys. Conf. Ser.,
854, 012027, https://doi.org/10.1088/1742-6596/854/1/012027, 2017. a
Larsen, T. J., Aagaard Madsen, H., Larsen, G. C., and Hansen, K. S.:
Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm,
Wind Energy,
16, 605–624, https://doi.org/10.1002/we.1563, 2013. a
Madsen, H. A., Larsen, G. C., Larsen, T. J., Troldborg, N., and Mikkelsen, R.:
Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code,
J. Sol. Energy Eng.,
132, 041014, https://doi.org/10.1115/1.4002555, 2010. a, b, c
Mann, J.:
The spatial structure of neutral atmospheric surface-layer turbulence,
J. Fluid Mech.,
273, 141–168, https://doi.org/10.1017/S0022112094001886, 1994. a
Mann, J.:
Wind field simulation,
Probabilist. Eng. Mech.,
13, 269–282, https://doi.org/10.1016/S0266-8920(97)00036-2, 1998. a
Nybø, A., Nielsen, F. G., Reuder, J., Churchfield, M. J., and Godvik, M.:
Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines,
Wind Energy,
23, 1810–1830, https://doi.org/10.1002/we.2518, 2020. a
Peña, A., Gryning, S.-E., and Mann, J.:
On the length-scale of the wind profile,
Q. J. Roy. Meteor. Soc.,
136, 2119–2131, https://doi.org/10.1002/qj.714, 2010. a, b
Pettas, V., Kretschmer, M., Clifton, A., and Cheng, P. W.: On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2021-50, in review, 2021.
a
Popko, W., Robertson, A., Jonkman, J., Wendt, F., Thomas, P., Müller, K., Kretschmer, M., Hagen, T. R., Galinos, C., Le Dreff, J.-B., Gilbert, P., Auriac, B., Oh, S., Qvist, J., Sørum, S. H., Suja-Thauvin, L., Shin, H., Molins, C., Trubat, P., Bonnet, P., Bergua, R., Wang, K., Fu, P., Cai, J., Cai, Z., Alexandre, A., and Harries, R.:
Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III,
J. Offshore Mech. Arct.,
143, 012002, https://doi.org/10.1115/1.4047378, 2021. a
RAVE (German research initiative Research at alpha ventus RAVE):
available at: https://www.rave-offshore.de/en/ (last access: 13 January 2021), 2021. a
Reinwardt, I., Schilling, L., Dalhoff, P., Steudel, D., and Breuer, M.:
Dynamic wake meandering model calibration using nacelle-mounted lidar systems, Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020, 2020. a
Reinwardt, I., Schilling, L., Steudel, D., Dimitrov, N., Dalhoff, P., and Breuer, M.: Validation of the dynamic wake meandering model with respect to loads and power production, Wind Energ. Sci., 6, 441–460, https://doi.org/10.5194/wes-6-441-2021, 2021. a
Shaler, K. and Jonkman, J.:
FAST.Farm development and validation of structural load prediction against large eddy simulations,
Wind Energy,
24, 428–449, https://doi.org/10.1002/we.2581, 2020. a, b, c
Shaler, K., Jonkman, J., Doubrawa, P., and Hamilton, N.:
FAST.Farm Response to Varying Wind Inflow Techniques: Preprint,
in: AIAA Scitech 2019 Forum, 7–11 January 2019, San Diego, CA, https://doi.org/10.2514/6.2019-2086, 2019a. a
Shaler, K., Jonkman, J., and Hamilton, N.:
Effects of Inflow Spatiotemporal Discretization on Wake Meandering and Turbine Structural Response using FAST.Farm,
J. Phys. Conf. Ser.,
1256, 012023, https://doi.org/10.1088/1742-6596/1256/1/012023, 2019b. a, b
Shaler, K., Debnath, M., and Jonkman, J.:
Validation of FAST.Farm Against Full-Scale Turbine SCADA Data for a Small Wind Farm,
J. Phys. Conf. Ser.,
1618, 062061, https://doi.org/10.1088/1742-6596/1618/6/062061, 2020. a
Westerhellweg, A., Canadillas, B., Beeken, A., and Neumann, T.:
One year of LiDAR measurements at FINO1-Platform: Comparison and verification to met-mast data,
in: Proceedings of 10th German wind energy conference DEWEK, 17–18 November 2010, Bremen, 2010. a
Westerhellweg, A., Riedel, V., and Neumann, T.:
Comparison of Lidar-and UAM-based offshore mast effect corrections,
in: Proceedings of EWEA, 14–17 March 2011, Brussels, 2011. a
Westerhellweg, A., Cañadillas, B., Kinder, F., and Neumann, T.:
Wake Measurements at alpha ventus – Dependency on Stability and Turbulence Intensity,
J. Phys. Conf. Ser.,
555, 012106, https://doi.org/10.1088/1742-6596/555/1/012106, 2014. a
Wise, A. S. and Bachynski, E. E.:
Wake meandering effects on floating wind turbines,
Wind Energy, 23, 1266–1285, https://doi.org/10.1002/we.2485, 2020. a
Short summary
We perform a validation of the new simulation tool FAST.Farm for the prediction of power output and structural loads in single wake conditions with respect to measurement data from the offshore wind farm alpha ventus. With a new wake-added turbulence functionality added to FAST.Farm, good agreement between simulations and measurements is achieved for the considered quantities. We hereby give insights into load characteristics of an offshore wind turbine subjected to single wake conditions.
We perform a validation of the new simulation tool FAST.Farm for the prediction of power output...
Altmetrics
Final-revised paper
Preprint