Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-2099-2022
https://doi.org/10.5194/wes-7-2099-2022
Research article
 | 
24 Oct 2022
Research article |  | 24 Oct 2022

Observer-based power forecast of individual and aggregated offshore wind turbines

Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn

Related authors

Enhancing minute-scale lidar-based power forecasts of offshore wind farms towards an operational use
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141,https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary
Alignment of scanning lidars in offshore wind farms
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022,https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Offshore wind farm global blockage measured with scanning lidar
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021,https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Minute-scale power forecast of offshore wind turbines using long-range single-Doppler lidar measurements
Frauke Theuer, Marijn Floris van Dooren, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 5, 1449–1468, https://doi.org/10.5194/wes-5-1449-2020,https://doi.org/10.5194/wes-5-1449-2020, 2020
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Atmospheric physics
Estimating the technical wind energy potential of Kansas that incorporates the effect of regional wind resource depletion by wind turbines
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024,https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Mesoscale weather systems and associated potential wind power variations in a midlatitude sea strait (Kattegat)
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 1695–1711, https://doi.org/10.5194/wes-9-1695-2024,https://doi.org/10.5194/wes-9-1695-2024, 2024
Short summary
A large-eddy simulation (LES) model for wind-farm-induced atmospheric gravity wave effects inside conventionally neutral boundary layers
Sebastiano Stipa, Mehtab Ahmed Khan, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 1647–1668, https://doi.org/10.5194/wes-9-1647-2024,https://doi.org/10.5194/wes-9-1647-2024, 2024
Short summary
Linking weather patterns to observed and modelled turbine hub-height winds offshore U.S. West Coast
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-76,https://doi.org/10.5194/wes-2024-76, 2024
Revised manuscript accepted for WES
Short summary
Simulating low-frequency wind fluctuations
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024,https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-Copula Constructions of Multiple Dependence, Insurance: Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. a
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561, 2017. a
Beck, H. and Kühn, M.: Temporal Up-Sampling of Planar Long-Range Doppler LiDAR Wind Speed Measurements Using Space-Time Conversion, Remote Sens., 11, 867, https://doi.org/10.3390/rs11070867, 2019. a
Bessa, R. J.: On the quality of the Gaussian copula for multi-temporal decision-making problems, in: 2016 Power Systems Computation Conference (PSCC), 20–24 June 2016, Genoa, Italy, 1–7, https://doi.org/10.1109/PSCC.2016.7541001, 2016. a, b, c, d, e
Coblenz, M.: MATVines: A vine copula package for MATLAB, SoftwareX, 14, 100700, https://doi.org/10.1016/j.softx.2021.100700, 2021. a
Download
Short summary
Remote-sensing-based approaches have shown potential for minute-scale forecasting and need to be further developed towards an operational use. In this work we extend a lidar-based forecast to an observer-based probabilistic power forecast by combining it with a SCADA-based method. We further aggregate individual turbine power using a copula approach. We found that the observer-based forecast benefits from combining lidar and SCADA data and can outperform persistence for unstable stratification.
Altmetrics
Final-revised paper
Preprint