Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-2117-2022
https://doi.org/10.5194/wes-7-2117-2022
Research article
 | 
26 Oct 2022
Research article |  | 26 Oct 2022

Predictive and stochastic reduced-order modeling of wind turbine wake dynamics

Søren Juhl Andersen and Juan Pablo Murcia Leon

Related authors

An inter-comparison study on the impact of atmospheric boundary layer height on gigawatt-scale wind plant performance
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88,https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Convergence and efficiency of global bases using proper orthogonal decomposition for capturing wind turbine wake aerodynamics
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025,https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022,https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Brief communication: How does complex terrain change the power curve of a wind turbine?
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022,https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021,https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Spatial development of planar and axisymmetric wakes of porous objects under a pressure gradient: a wind tunnel study
Wessel van der Deijl, Martín Obligado, Stéphane Barre, and Christophe Sicot
Wind Energ. Sci., 10, 719–732, https://doi.org/10.5194/wes-10-719-2025,https://doi.org/10.5194/wes-10-719-2025, 2025
Short summary
Numerical investigation of regenerative wind farms featuring enhanced vertical energy entrainment
YuanTso Li, Wei Yu, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci., 10, 631–659, https://doi.org/10.5194/wes-10-631-2025,https://doi.org/10.5194/wes-10-631-2025, 2025
Short summary
Convergence and efficiency of global bases using proper orthogonal decomposition for capturing wind turbine wake aerodynamics
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025,https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Direct integration of non-axisymmetric Gaussian wind-turbine wake including yaw and wind-veer effects
Karim Ali, Pablo Ouro, and Tim Stallard
Wind Energ. Sci., 10, 511–533, https://doi.org/10.5194/wes-10-511-2025,https://doi.org/10.5194/wes-10-511-2025, 2025
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci., 10, 435–450, https://doi.org/10.5194/wes-10-435-2025,https://doi.org/10.5194/wes-10-435-2025, 2025
Short summary

Cited articles

Aagaard Madsen, H., Bak, C., Schmidt Paulsen, U., Gaunaa, M., Fuglsang, P., Romblad, J., Olesen, N., Enevoldsen, P., Laursen, J., and Jensen, L.: The DAN-AERO MW Experiments, Denmark, Forskningscenter Risø, Risø-R, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, https://orbit.dtu.dk/en/publications/the-dan-aero-mw-experiments-final-report (last access: 10 October 2022), 2010. 
Ali, N., Calaf, M., and Cal, R. B.: Cluster-based probabilistic structure dynamical model of wind turbine wake, J. Turbulence, 22, 497–516, https://doi.org/10.1080/14685248.2021.1925125, 2021. a
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Andersen, S., Sørensen, J., and Mikkelsen, R.: Reduced order model of the inherent turbulence of wind turbine wakes inside an infinitely long row of turbines, J. Phys.: Conf. Ser., 555, 012005, https://doi.org/10.1088/1742-6596/555/1/012005, 2014. a
Andersen, S. J.: Simulation and Prediction of Wakes and Wake Interaction in Wind Farms, PhD thesis, Technical University of Denmark, Wind Energy, https://orbit.dtu.dk/en/projects/simulation-and-prediction-of-wakes-and-wake-interaction-in (last access: 10 October 2022), 2013. a, b
Download
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Share
Altmetrics
Final-revised paper
Preprint