Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-2117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-2117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predictive and stochastic reduced-order modeling of wind turbine wake dynamics
Department of Wind and Energy Systems, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs Lyngby, Denmark
Juan Pablo Murcia Leon
Department of Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
Related authors
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025, https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Short summary
Using a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error in the flow reconstruction, and the insensitivity to which datasets are included for generating the global base.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Søren Juhl Andersen, Simon-Philippe Breton, Björn Witha, Stefan Ivanell, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1689–1703, https://doi.org/10.5194/wes-5-1689-2020, https://doi.org/10.5194/wes-5-1689-2020, 2020
Short summary
Short summary
The complexity of wind farm operation increases as the wind farms get larger and larger. Therefore, researchers from three universities have simulated numerous different large wind farms as part of an international benchmark. The study shows how simple engineering models can capture the general trends, but high-fidelity simulations are required in order to quantify the variability and uncertainty associated with power production of the wind farms and hence the potential profitability and risks.
Esperanza Soto Sagredo, Søren Juhl Andersen, Ásta Hannesdóttir, and Jennifer Marie Rinker
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-148, https://doi.org/10.5194/wes-2025-148, 2025
Preprint under review for WES
Short summary
Short summary
We developed and tested three methods to estimate wind speed variations across the entire rotor area of a wind turbine using lidar data. Unlike traditional approaches that focus on average wind speed, our methods capture detailed inflow structures. This allows the turbine to anticipate changes, improving control and reducing wear – provided the estimation settings are properly selected.
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88, https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
Short summary
This study explores how the height of the atmosphere's boundary layer impacts wind farm performance, focusing on how this factor influences energy output. By simulating different boundary layer heights and conditions, the research reveals that deeper layers promote better energy recovery. The findings highlight the importance of considering atmospheric conditions when simulating wind farms to maximize energy efficiency, offering valuable insights for the wind energy industry.
Juan Felipe Céspedes Moreno, Juan Pablo Murcia León, and Søren Juhl Andersen
Wind Energ. Sci., 10, 597–611, https://doi.org/10.5194/wes-10-597-2025, https://doi.org/10.5194/wes-10-597-2025, 2025
Short summary
Short summary
Using a global base in a proper orthogonal decomposition provides a common base for analyzing flows, such as wind turbine wakes, across an entire parameter space. This can be used to compare flows with different conditions using the same physical interpretation. This work shows the convergence of the global base, its small error compared to the truncation error in the flow reconstruction, and the insensitivity to which datasets are included for generating the global base.
Charbel Assaad, Juan Pablo Murcia Leon, Julian Quick, Tuhfe Göçmen, Sami Ghazouani, and Kaushik Das
Wind Energ. Sci., 10, 559–578, https://doi.org/10.5194/wes-10-559-2025, https://doi.org/10.5194/wes-10-559-2025, 2025
Short summary
Short summary
This research develops a new method for assessing hybrid power plant (HPP) profitability, combining wind and battery systems. It addresses the need for an efficient, accurate, and comprehensive operational model by approximating a state-of-the-art energy management system (EMS) for spot market power bidding using machine learning. The approach significantly reduces computational demands while maintaining high accuracy. It thus opens new possibilities in terms of optimizing the design of HPPs.
Juan Pablo Murcia Leon, Hajar Habbou, Mikkel Friis-Møller, Megha Gupta, Rujie Zhu, and Kaushik Das
Wind Energ. Sci., 9, 759–776, https://doi.org/10.5194/wes-9-759-2024, https://doi.org/10.5194/wes-9-759-2024, 2024
Short summary
Short summary
A methodology for an early design of hybrid power plants (wind, solar, PV, and Li-ion battery storage) consisting of a nested optimization that sizes the components and internal operation optimization. Traditional designs that minimize the levelized cost of energy give worse business cases and do not include storage. Optimal operation balances the increasing revenues and faster battery degradation. Battery degradation and replacement costs are needed to estimate the viability of hybrid projects.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary
Short summary
This article shows that the power performance of a wind turbine may be very different in flat and complex terrain. This is an important finding because it shows that the power output of a given wind turbine is governed by not only the available wind at the position of the turbine but also how the ambient flow develops in the region behind the turbine.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Juan Pablo Murcia Leon, Matti Juhani Koivisto, Poul Sørensen, and Philippe Magnant
Wind Energ. Sci., 6, 461–476, https://doi.org/10.5194/wes-6-461-2021, https://doi.org/10.5194/wes-6-461-2021, 2021
Short summary
Short summary
Detailed wind generation simulations of the 2028 Belgian offshore fleet are performed in order to quantify the distribution and extremes of power fluctuations in several time windows. A model validation with respect to the operational data of the 2018 fleet shows that the methodology presented in this article is able to capture the distribution of wind power and its spatiotemporal characteristics. The results show that the standardized generation ramps are expected to be reduced in the future.
Søren Juhl Andersen, Simon-Philippe Breton, Björn Witha, Stefan Ivanell, and Jens Nørkær Sørensen
Wind Energ. Sci., 5, 1689–1703, https://doi.org/10.5194/wes-5-1689-2020, https://doi.org/10.5194/wes-5-1689-2020, 2020
Short summary
Short summary
The complexity of wind farm operation increases as the wind farms get larger and larger. Therefore, researchers from three universities have simulated numerous different large wind farms as part of an international benchmark. The study shows how simple engineering models can capture the general trends, but high-fidelity simulations are required in order to quantify the variability and uncertainty associated with power production of the wind farms and hence the potential profitability and risks.
Andreas Bechmann, Juan Pablo M. Leon, Bjarke T. Olsen, and Yavor V. Hristov
Wind Energ. Sci., 5, 1679–1688, https://doi.org/10.5194/wes-5-1679-2020, https://doi.org/10.5194/wes-5-1679-2020, 2020
Short summary
Short summary
When assessing wind resources for wind farm development, the first step is to measure the wind from tall meteorological masts. As met masts are expensive, they are not built at every planned wind turbine position but sparsely while trying to minimize the distance. However, this paper shows that it is better to focus on the
similaritybetween the met mast and the wind turbines than the distance. Met masts at similar positions reduce the uncertainty of wind resource assessments significantly.
Cited articles
Aagaard Madsen, H., Bak, C., Schmidt Paulsen, U., Gaunaa, M., Fuglsang, P.,
Romblad, J., Olesen, N., Enevoldsen, P., Laursen, J., and Jensen, L.: The
DAN-AERO MW Experiments, Denmark, Forskningscenter Risø, Risø-R,
Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, https://orbit.dtu.dk/en/publications/the-dan-aero-mw-experiments-final-report (last access: 10 October 2022), 2010.
Ali, N., Calaf, M., and Cal, R. B.: Cluster-based probabilistic structure
dynamical model of wind turbine wake, J. Turbulence, 22, 497–516,
https://doi.org/10.1080/14685248.2021.1925125, 2021. a
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299,
https://doi.org/10.1007/s10546-017-0307-5, 2018. a
Andersen, S., Sørensen, J., and Mikkelsen, R.: Reduced order model of the
inherent turbulence of wind turbine wakes inside an infinitely long row of
turbines, J. Phys.: Conf. Ser., 555, 012005, https://doi.org/10.1088/1742-6596/555/1/012005, 2014. a
Andersen, S. J.: Simulation and Prediction of Wakes and Wake Interaction in
Wind Farms, PhD thesis, Technical University of Denmark, Wind Energy,
https://orbit.dtu.dk/en/projects/simulation-and-prediction-of-wakes-and-wake-interaction-in
(last access: 10 October 2022), 2013. a, b
Andersen, S. J., Sørensen, J. N., and Mikkelsen, R.: Simulation of the
inherent turbulence and wake interaction inside an infinitely long row of
wind turbines, J. Turbulence, 14, 1–24, https://doi.org/10.1080/14685248.2013.796085, 2013. a
Andersen, S. J., Sørensen, J. N., and Mikkelsen, R. F.: Turbulence and
entrainment length scales in large wind farms, Philos. T. Roy. Soc. Lond. A, 375, 20160107, https://doi.org/10.1098/rsta.2016.0107, 2017. a, b
Andersen, S. J., Breton, S.-P., Witha, B., Ivanell, S., and Sørensen, J. N.: Global trends in the performance of large wind farms based on high-fidelity simulations, Wind Energ. Sci., 5, 1689–1703, https://doi.org/10.5194/wes-5-1689-2020, 2020. a, b
Bastine, D., Bastine, D., Vollmer, L., Vollmer, L., Wächter, M., Peinke, J., and Peinke, J.: Stochastic wake modelling based on POD analysis, Energies, 11, 612, https://doi.org/10.3390/en11030612, 2018. a, b
Berkooz, G., Holmes, P., and Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539–575, https://doi.org/10.1146/annurev.fl.25.010193.002543, 1993. a
Castro, I.: Rough-wall boundary layers: Mean flow universality, J. Fluid Mech., 585, 469–485, https://doi.org/10.1017/S0022112007006921, 2007. a
Christensen, E. A., Brøns, M., and Sørensen, J. N.: Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to
Parameter-Dependent Nonturbulent Flows, SIAM J. Scient. Comput., 21, 1419–1434, https://doi.org/10.1137/S1064827598333181, 1999. a
Cillis, G. D., Cherubini, S., Semeraro, O., Leonardi, S., and Palma, P. D.:
POD analysis of the recovery process in wind turbine wakes, J. Phys.: Conf. Ser., 1618, 062016, https://doi.org/10.1088/1742-6596/1618/6/062016, 2020. a
Deardorff, J.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a
Debnath, M., Santoni, C., Leonardi, S., and Iungo, G. V.: Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes, Philos. T. Roy. Soc. A, 375, 20160108,
https://doi.org/10.1098/rsta.2016.0108, 2017. a
Dimitrov, N.: Surrogate models for parameterized representation of wake-induced loads in wind farms, Wind Energy, 22, 1371–1389, https://doi.org/10.1002/we.2362, 2019. a
Dong, L., Lio, W. H., and Pirrung, G. R.: Analysis and design of an adaptive
turbulence-based controller for wind turbines, Renew. Energy, 178, 730–744, https://doi.org/10.1016/j.renene.2021.06.080, 2021. a
George, W. K.: Insight into the dynamics of coherent structures from a proper
orthogonal decomposition, Proceedings of the International Centre for Heat
and Mass Transfer, Hemisphere Publ. Corp., 469–487,
http://www.turbulence-online.com/Publications/Papers/George88d.pdf
(last access: 10 October 2022), 1988. a
Hamilton, N., Viggiano, B., Calaf, M., Tutkun, M., and Cal, R. B.: A
generalized framework for reduced-order modeling of a wind turbine wake, Wind
Energy, 21, 373–390, https://doi.org/10.1002/we.2167, 2018. a
Hinton, G. E. and Salakhutdinov, R. R.: Reducing the dimensionality of data
with neural networks, Science, 313, 504–507, https://doi.org/10.1126/science.1127647,
2006. a
Hodgson, E. L., Andersen, S. J., Troldborg, N., Meyer Forsting, A. R.,
Mikkelsen, R. F., and Sørensen, J. N.: A quantitative comparison of aeroelastic computations using flex5 and actuator methods in les, J. Phys.: Conf. Ser., 1934, https://doi.org/10.1088/1742-6596/1934/1/012014, 2021. a, b
Iqbal, M. O. and Thomas, F. O.: Coherent structure in a turbulent jet via a
vector implementation of the proper orthogonal decomposition, J. Fluid Mech., 571, 281–326, 2007. a
Larsen, G. C., Madsen, H. A., Bingöl, F., Mann, J., Ott, S., Sørensen,
J. N., Okulov, V., Troldborg, N., Nielsen, M., Thomsen, K., Larsen, T. J.,
and Mikkelsen, R.: Dynamic wake meandering modeling, Tech. Rep. R-1607(EN),
Risø-DTU, Roskilde, Denmark, https://orbit.dtu.dk/en/publications/dynamic-wake-meandering-modeling
(last access: 10 October 2022), 2007. a
Larsen, G. C., Madsen, H. A., Thomsen, K., and Larsen, T. J.: Wake Meandering: A Pragmatic Approach, Wind Energy, 11, 377–395, https://doi.org/10.1002/we.267, 2008. a
Larsen, T., Larsen, G., Pedersen, M., Enevoldsen, K., and Madsen, H.:
Validation of the Dynamic Wake Meander model with focus on tower loads, J. Phys.: Conf. Ser. 854, 012027, https://doi.org/10.1088/1742-6596/854/1/012027, 2017. a
Lumley, J. L.: The Structure of Inhomogeneous Turbulence, in: Atmospheric
Turbulence and Wave Propagation, Nauka, Moscow, 166–178, ISBN 9783937655239, 1967. a
Mann, J.: The spatial structure of neutral atmospheric surface-layer
turbulence, J. Fluid Mech., 273, 141–168, https://doi.org/10.1017/S0022112094001886, 1994. a, b
Mann, J.: Wind field simulation, Probabil. Eng. Mech., 13, 269–282,
https://doi.org/10.1016/S0266-8920(97)00036-2, 1998. a
Mann, J., Peña, A., Troldborg, N., and Andersen, S. J.: How does turbulence change approaching a rotor?, Wind Energ. Sci., 3, 293–300,
https://doi.org/10.5194/wes-3-293-2018, 2018. a
Meneveau, C.: Big wind power: seven questions for turbulence research, J. Turbulence, 20, 2–20, https://doi.org/10.1080/14685248.2019.1584664, 2019. a, b
Michelsen, J. A.: Basis 3D – A Platform for Development of Multiblock PDE Solvers, Tech. rep., Danmarks Tekniske Universitet, https://orbit.dtu.dk/files/272917945/Michelsen_J_Basis3D.pdf
(last access: 10 October 2022), 1992. a
Michelsen, J. A.: Block structured Multigrid solution of 2D and 3D elliptic
PDE's, Tech. Rep. AFM 94-06, Technical University of Denmark, 1994. a
Mikkelsen, R.: Actuator Disc Methods Applied to Wind Turbines, PhD thesis, Technical University of Denmark, Mek dept, https://orbit.dtu.dk/en/publications/actuator-disc-methods-applied-to-wind-turbines
(last access: 10 October 2022), 2003. a
Moon, J. S. and Manuel, L.: Toward understanding waked flow fields behind a
wind turbine using proper orthogonal decomposition, J. Renew. Sustain. Energ., 13, 023302, https://doi.org/10.1063/5.0035751, 2021. a
Munters, W., Meneveau, C., and Meyers, J.: Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows, Phys. Fluids, 28,
025112, https://doi.org/10.1063/1.4941912, 2016. a
Newman, A. J., Drew, D. A., and Castillo, L.: Pseudo spectral analysis of the
energy entrainment in a scaled down wind farm, Renew. Energy, 70, 129–141, https://doi.org/10.1016/j.renene.2014.02.003, 2014. a
Øye, S.: Flex4 simulation of wind turbine dynamics, in: Proceedings of 28th IEA Meeting of Experts Concerning State of the Art of Aeroelastic Codes for Wind Turbine Calculations. Available through International Energy Agency,
Danmarks Tekniske Universitet, Lyngby, Denmark, 71–76, 1996. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59,
https://doi.org/10.1007/s10546-019-00473-0, 2020. a, b, c
Qatramez, A. E. and Foti, D.: A reduced-order model for the near wake dynamics of a wind turbine: Model development and uncertainty quantification, J. Renew. Sustain. Energ., 14, 013303, https://doi.org/10.1063/5.0071789, 2022. a
Reinwardt, I., Schilling, L., Steudel, D., Dimitrov, N., Dalhoff, P., and
Breuer, M.: Validation of the dynamic wake meandering model with respect to
loads and power production, Wind Energ. Sci., 6, 441–460,
https://doi.org/10.5194/wes-6-441-2021, 2021. a
Saranyasoontorn, K. and Manuel, L.: Low-Dimensional Representations of Inflow
Turbulence and Wind Turbine Response Using Proper Orthogonal Decomposition,
J. Solar Energ. Eng., 127, 553–562, https://doi.org/10.1115/1.2037108, 2005. a
Shen, W. Z., Michelsen, J. A., Sørensen, N. N., and Sørensen, J. N.: An Improved SIMPLEC Method on Collocated Grids For Steady And Unsteady Flow
Computations, Numer. Heat Trans. Pt. B, 43, 221–239, https://doi.org/10.1080/713836202, 2003. a
Shinozuka, M. and Jan, C.-M.: Digital simulation of random processes and its
applications, J. Sound Vibrat., 25, 111–128, 1972. a
Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent
structures, Quart. Appl. Math., 45, 561–70, https://doi.org/10.1090/qam/910462, 1987. a
Sørensen, J. N., Mikkelsen, R., Henningson, D. S., Ivanell, S., Sarmast, S., and Andersen, S. J.: Simulation of wind turbine wakes using the actuator line technique, Philos. T. Roy. Soc. Lond. A, 373, 20140071,
https://doi.org/10.1098/rsta.2014.0071, 2015. a
Sørensen, N. N.: General Purpose Flow Solver Applied to Flow over Hills ,
PhD thesis, Technical University of Denmark, https://orbit.dtu.dk/en/publications/general-purpose-flow-solver-applied-to-flow-over-hills (last access: 10 October 2022), 1995. a
Sørensen, P., Hansen, A. D., and Rosas, P. A. C.: Wind models for simulation of power fluctuations from wind farms, J. Wind Eng. Indust. Aerodynam., 90, 1381–1402, https://doi.org/10.1016/S0167-6105(02)00260-X, 2002. a, b
Stankiewicz, W., Morzynski, M., Kotecki, K., and Noack, B. R.: On the need of mode interpolation for data-driven Galerkin models of a transient flow around
a sphere, Theor. Comput. Fluid Dynam., 31, 111–126,
https://doi.org/10.1007/s00162-016-0408-7, 2017. a
Stevens, R. J. and Meneveau, C.: Flow Structure and Turbulence in Wind Farms,
Annu. Rev. Fluid Mech., 49, 311–339, https://doi.org/10.1146/annurev-fluid-010816-060206, 2017. a
Troldborg, N. and Meyer Forsting, A.: A simple model of the wind turbine
induction zone derived from numerical simulations, Wind Energy, 20, 2011–2020, https://doi.org/10.1002/we.2137, 2017. a, b
Troldborg, N., Andersen, S. J., Hodgson, E. L., and Meyer Forsting, A.: Brief communication: How does complex terrain change the power curve of a wind turbine?, Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022, 2022. a
van der Laan, M., Andersen, S., Kelly, M., and Baungaard, M.: Fluid scaling
laws of idealized wind farm simulations, in: vol. 1618, IOP Publishing,
https://doi.org/10.1088/1742-6596/1618/6/062018, 2020. a, b
van der Laan, M. P., Andersen, S. J., and Réthoré, P.-E.: Brief
communication: Wind-speed-independent actuator disk control for faster annual
energy production calculations of wind farms using computational fluid
dynamics, Wind Energ. Sci., 4, 645–651, https://doi.org/10.5194/wes-4-645-2019, 2019. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P.,
Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J.,
Robertson, A., Sanz Rodrigo, J., Sempreviva, A., Smith, J., Tuohy, A., and
Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
Veers, P., Bottasso, C., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., Robinson, M., Ananthan, S., Barlas, A., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J.: Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2022-32, in review, 2022. a
VerHulst, C. and Meneveau, C.: Large eddy simulation study of the kinetic
energy entrainment by energetic turbulent flow structures in large wind
farms, Phys. Fluids, 26, 025113, https://doi.org/10.1063/1.4865755, 2014. a
Wu, Y.-T. and Porté-Agel, F.: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects, Bound.-Lay. Meteorol.,
146, 181–205, https://doi.org/10.1007/s10546-012-9757-y, 2013.
a
Xiao, D., Heaney, C. E., Mottet, L., Fang, F., Lin, W., Navon, I. M., Guo, Y., Matar, O. K., Robins, A. G., and Pain, C. C.: A reduced order model for
turbulent flows in the urban environment using machine learning, Build.
Environ., 148, 323–337, https://doi.org/10.1016/j.buildenv.2018.10.035, 2019. a
Zhang, Z., Santoni, C., Herges, T., Sotiropoulos, F., and Khosronejad, A.:
Time-Averaged Wind Turbine Wake Flow Field Prediction Using Autoencoder
Convolutional Neural Networks, Energies, 15, 41, https://doi.org/10.3390/en15010041, 2022. a
Short summary
Simulating the turbulent flow inside large wind farms is inherently complex and computationally expensive. A new and fast model is developed based on data from high-fidelity simulations. The model captures the flow dynamics with correct statistics for a wide range of flow conditions. The model framework provides physical insights and presents a generalization of high-fidelity simulation results beyond the case-specific scenarios, which has significant potential for future turbulence modeling.
Simulating the turbulent flow inside large wind farms is inherently complex and computationally...
Altmetrics
Final-revised paper
Preprint