Articles | Volume 8, issue 11
https://doi.org/10.5194/wes-8-1651-2023
https://doi.org/10.5194/wes-8-1651-2023
Brief communication
 | 
08 Nov 2023
Brief communication |  | 08 Nov 2023

Brief communication: On the definition of the low-level jet

Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée

Related authors

Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024,https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
The winds are twisting: analysis of strong directional shear across the rotor plane using coastal lidar measurements and ERA5
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129,https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Classification and properties of non-idealized coastal wind profiles – an observational study
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022,https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021,https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024,https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024,https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Renewable Energy Complementarity (RECom) maps – a comprehensive visualisation tool to support spatial diversification
Til Kristian Vrana and Harald G. Svendsen
Wind Energ. Sci., 9, 919–932, https://doi.org/10.5194/wes-9-919-2024,https://doi.org/10.5194/wes-9-919-2024, 2024
Short summary
Control-oriented modelling of wind direction variability
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024,https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary

Cited articles

Aird, J. A., Barthelmie, R. J., Shepherd, T. J., and Pryor, S. C.: WRF-simulated low-level jets over Iowa: characterization and sensitivity studies, Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, 2021. a, b
Algarra, I., Eiras-Barca, J., Nieto, R., and Gimeno, L.: Global climatology of nocturnal low-level jets and associated moisture sources and sinks, Atmos. Res., 229, 39–59, https://doi.org/10.1016/j.atmosres.2019.06.016, 2019. a
Baas, P., Bosveld, F., Klein Baltink, H., and Holtslag, A.: A climatology of nocturnal low-level jets at Cabauw, J. Appl. Meteorol. Clim., 48, 1627–1642, https://doi.org/10.1175/2009JAMC1965.1, 2009. a
Banta, R. M., Pichugina, Y. L., and Brewer, W. A.: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet, J. Atmos. Sci., 63, 2700–2719, https://doi.org/10.1175/JAS3776.1, 2006. a
Barthelmie, R. J., Shepherd, T. J., Aird, J. A., and Pryor, S. C.: Power and wind shear implications of large wind turbine scenarios in the US Central Plains, Energies, 13, 4269, https://doi.org/10.3390/en13164269, 2020. a, b
Download
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Altmetrics
Final-revised paper
Preprint