Articles | Volume 8, issue 11
https://doi.org/10.5194/wes-8-1711-2023
https://doi.org/10.5194/wes-8-1711-2023
Research article
 | 
16 Nov 2023
Research article |  | 16 Nov 2023

Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine

Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Brief communication: On the definition of the low-level jet
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023,https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset
Serkan Kartal, Sukanta Basu, and Simon J. Watson
Wind Energ. Sci., 8, 1533–1551, https://doi.org/10.5194/wes-8-1533-2023,https://doi.org/10.5194/wes-8-1533-2023, 2023
Short summary
Revealing inflow and wake conditions of a 6 MW floating turbine
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023,https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Stochastic gradient descent for wind farm optimization
Julian Quick, Pierre-Elouan Rethore, Mads Mølgaard Pedersen, Rafael Valotta Rodrigues, and Mikkel Friis-Møller
Wind Energ. Sci., 8, 1235–1250, https://doi.org/10.5194/wes-8-1235-2023,https://doi.org/10.5194/wes-8-1235-2023, 2023
Short summary
Modelling the impact of trapped lee waves on offshore wind farm power output
Sarah J. Ollier and Simon J. Watson
Wind Energ. Sci., 8, 1179–1200, https://doi.org/10.5194/wes-8-1179-2023,https://doi.org/10.5194/wes-8-1179-2023, 2023
Short summary

Cited articles

Aubrun, S., Loyer, S., Hancock, P. E., and Hayden, P.: Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model, J. Wind Eng. Indust. Aerodynam., 120, 1–8, https://doi.org/10.1016/j.jweia.2013.06.007, 2013. a
Bartl, J., Pierella, F., and Sætran, L.: Wake measurements behind an array of two model wind turbines, Energy Procedia, 24, 305–312, https://doi.org/10.1016/j.egypro.2012.06.113, 2012. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energy, 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a
Bastine, D., Witha, B., Wächter, M., and Peinke, J.: POD analysis of a wind turbine wake in a turbulent atmospheric boundary layer, J. Phys.: Conf. Ser., 524, 012153, https://doi.org/10.1088/1742-6596/524/1/012153, 2014. a
Bastine, D., Witha, B., Wächter, M., and Peinke, J.: Towards a simplified dynamic wake model using POD analysis, Energies, 8, 895–920, https://doi.org/10.3390/en8020895, 2015. a, b, c
Download
Short summary
The work presented here proposes interfacing experimental measurements performed in a wind tunnel with simulations conducted with the aeroelastic code FAST and applied to a floating wind turbine model under wave-induced motion. FAST simulations using experiments match well with those obtained using the inflow generation method provided by TurbSim. The highest surge motion frequencies show a significant decrease in the mean power produced by the turbine and a mitigation of the flow dynamics.