Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-747-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-747-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment
Balthazar Arnoldus Maria Sengers
CORRESPONDING AUTHOR
ForWind, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
current address: Fraunhofer IWES, Küpkersweg 70, 26129 Oldenburg, Germany
Gerald Steinfeld
ForWind, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Paul Hulsman
ForWind, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Martin Kühn
ForWind, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Related authors
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Balthazar Arnoldus Maria Sengers, Matthias Zech, Pim Jacobs, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 7, 1455–1470, https://doi.org/10.5194/wes-7-1455-2022, https://doi.org/10.5194/wes-7-1455-2022, 2022
Short summary
Short summary
Wake steering aims to redirect the wake away from a downstream turbine. This study explores the potential of a data-driven surrogate model whose equations can be interpreted physically. It estimates wake characteristics from measurable input variables by utilizing a simple linear model. The model shows encouraging results in estimating available power in the far wake, with significant improvements over currently used analytical models in conditions where wake steering is deemed most effective.
Daniel Ribnitzky, Vlaho Petrovic, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-143, https://doi.org/10.5194/wes-2025-143, 2025
Preprint under review for WES
Short summary
Short summary
We developed controllers for the Hybrid-Lambda Rotor, which enables two operating modes below rated power via different tip speed ratios, balancing load reduction and power output. A baseline controller with a model-based wind speed estimator, a load feedback controller and an inflow feed-forward controller were implemented on the MoWiTO 1.8 model turbine and tested in wind tunnel experiments. In depth scaling considerations ensure the transferability of the results to the full-scale model.
Johannes Paulsen, Jörge Schneemann, Gerald Steinfeld, Frauke Theuer, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-118, https://doi.org/10.5194/wes-2025-118, 2025
Preprint under review for WES
Short summary
Short summary
While Low-Level Jets (LLJs) have been well-characterized, their impact on offshore wind farms is not well understood. This study uses multi-elevation lidar scans to derive vertical wind profiles up to 350 m and detect LLJs in up to 22.6 % of available measurements. Further, we analyze their effect on power production using operational wind farm data, observing a slightly negative influence and increased power fluctuations during LLJ events.
Daniel Ribnitzky, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 10, 1329–1349, https://doi.org/10.5194/wes-10-1329-2025, https://doi.org/10.5194/wes-10-1329-2025, 2025
Short summary
Short summary
In this paper, the Hybrid-Lambda Rotor is scaled to wind tunnel size and validated in wind tunnel experiments. The objectives are to derive a scaling methodology, to investigate the influence of the steep gradients of axial induction along the blade span, and to characterize the near wake. The study reveals complex three-dimensional flow patterns for blade designs with non-uniform loading, and it can offer new inspirations when solving other scaling problems for complex wind turbine systems.
Arjun Anantharaman, Jörge Schneemann, Frauke Theuer, Laurent Beaudet, Valentin Bernard, Paul Deglaire, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-20, https://doi.org/10.5194/wes-2025-20, 2025
Revised manuscript accepted for WES
Short summary
Short summary
The offshore wind farm sector is expanding rapidly, and the interactions between wind farms are important to analyse for both existing and planned wind farms. We developed a new methodology to quantify how much the reductions in wind speed behind a farm can affect the loads on turbines which are tens of kilometers downstream. We found a 2.5 % increase in the turbine loads and discuss how further measurements could add to the design standards of future wind farms.
David Onnen, Gunner Christian Larsen, Alan Wai Hou Lio, Paul Hulsman, Martin Kühn, and Vlaho Petrović
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-188, https://doi.org/10.5194/wes-2024-188, 2025
Revised manuscript under review for WES
Short summary
Short summary
Neighbouring wind turbines influence each other, as they leave a complex footprint of reduced wind speed and changed turbulence in the flow, called wake. Modern wind farm control sees the turbines as team players and aims to mitigate the negative effects of such interaction. To do so, the exact flow situation in the wind farm must be known. We show, how to use wind turbines as sensors for waked inflow, test this in the field and compare with independent laser measurements of the flow field.
Manuel Alejandro Zúñiga Inestroza, Paul Hulsman, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-171, https://doi.org/10.5194/wes-2024-171, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wake effects cause power losses that degrade wind farm efficiency. This paper presents a wind tunnel investigation of dynamic induction control (DIC), a strategy to mitigate wake losses by improving turbine-flow interactions. WindScanner lidar measurements are used to explore the wake development of model turbines in response to DIC. Our results demonstrate consistent benefits and adaptability under realistic inflow conditions, highlighting DIC’s potential to increase wind farm power production.
Frauke Theuer, Janna Kristina Seifert, Jörge Schneemann, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-141, https://doi.org/10.5194/wes-2024-141, 2024
Preprint under review for WES
Short summary
Short summary
To be useful for end-users the forecast horizon of lidar-based minute-scale forecasts needs to be extended to at least 15 minutes. In this work, we adapt a lidar-based forecasting methodology to predict wind speed and power with horizons of up to 30 minutes. We found that the skill of the lidar-based approach highly depends on atmospheric conditions and the forecast characteristics. It was able to outperform persistence up to a 16 minute forecast horizon during unstable conditions.
Sonja Steinbrück, Thorben Eilers, Lukas Vollmer, Kerstin Avila, and Gerald Steinfeld
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-146, https://doi.org/10.5194/wes-2024-146, 2024
Preprint withdrawn
Short summary
Short summary
This paper introduces an enhanced coupling between the LES code PALM and the aeroelastic code FAST, enabling detailed turbine output in temporally and spatially heterogeneous atmospheric flows while maintaining computational efficiency. A wind speed correction is added to reduce errors from force smearing on the numerical grid. Results were evaluated through comparisons between different model setups and turbine measurements, including assessments in a two-turbine wake situation.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci., 9, 359–383, https://doi.org/10.5194/wes-9-359-2024, https://doi.org/10.5194/wes-9-359-2024, 2024
Short summary
Short summary
This paper provides an innovative blade design methodology for offshore wind turbines with very large rotors compared to their rated power, which are tailored for an increased power feed-in at low wind speeds. Rather than designing the blade for a single optimized operational point, we include the application of peak shaving in the design process and introduce a design for two tip speed ratios. We describe how enlargement of the rotor diameter can be realized to improve the value of wind power.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Maarten J. van den Broek, Delphine De Tavernier, Paul Hulsman, Daan van der Hoek, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1909–1925, https://doi.org/10.5194/wes-8-1909-2023, https://doi.org/10.5194/wes-8-1909-2023, 2023
Short summary
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023, https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Short summary
This study examines wind vane measurements of commercial wind turbines and their impact on yaw control. The authors discovered that rotor interference can cause an overestimation of wind vane measurements, leading to overcorrection of the yaw controller. A correction function that improves the yaw behaviour is presented and validated in free-field experiments on a commercial wind turbine. This work provides new insights into wind direction measurements and suggests ways to optimize yaw control.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Frauke Theuer, Andreas Rott, Jörge Schneemann, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 7, 2099–2116, https://doi.org/10.5194/wes-7-2099-2022, https://doi.org/10.5194/wes-7-2099-2022, 2022
Short summary
Short summary
Remote-sensing-based approaches have shown potential for minute-scale forecasting and need to be further developed towards an operational use. In this work we extend a lidar-based forecast to an observer-based probabilistic power forecast by combining it with a SCADA-based method. We further aggregate individual turbine power using a copula approach. We found that the observer-based forecast benefits from combining lidar and SCADA data and can outperform persistence for unstable stratification.
Frederik Berger, Lars Neuhaus, David Onnen, Michael Hölling, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 7, 1827–1846, https://doi.org/10.5194/wes-7-1827-2022, https://doi.org/10.5194/wes-7-1827-2022, 2022
Short summary
Short summary
We proof the dynamic inflow effect due to gusts in wind tunnel experiments with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg, where we created coherent gusts with an active grid. The effect is isolated in loads and rotor flow by comparison of a quasi-steady and a dynamic case. The observed effect is not caught by common dynamic inflow engineering models. An improvement to the Øye dynamic inflow model is proposed, matching experiment and corresponding FVWM simulations.
Balthazar Arnoldus Maria Sengers, Matthias Zech, Pim Jacobs, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 7, 1455–1470, https://doi.org/10.5194/wes-7-1455-2022, https://doi.org/10.5194/wes-7-1455-2022, 2022
Short summary
Short summary
Wake steering aims to redirect the wake away from a downstream turbine. This study explores the potential of a data-driven surrogate model whose equations can be interpreted physically. It estimates wake characteristics from measurable input variables by utilizing a simple linear model. The model shows encouraging results in estimating available power in the far wake, with significant improvements over currently used analytical models in conditions where wake steering is deemed most effective.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Sonja Krüger, Gerald Steinfeld, Martin Kraft, and Laura J. Lukassen
Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, https://doi.org/10.5194/wes-7-323-2022, 2022
Short summary
Short summary
Detailed numerical simulations of turbines in atmospheric conditions are challenging with regard to their computational demand. We coupled an atmospheric flow model and a turbine model in order to deliver extensive details about the flow and the turbine response within reasonable computational time. A comparison to measurement data was performed and showed a very good agreement. The efficiency of the tool enables applications such as load calculation in wind farms or during low-level-jet events.
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022, https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Short summary
We present three methods that can determine the alignment of a lidar placed on the transition piece of an offshore wind turbine based on measurements with the instrument: a practical implementation of hard targeting for north alignment, a method called sea surface levelling to determine the levelling of the system from water surface measurements, and a model that can determine the dynamic levelling based on the operating status of the wind turbine.
Paul Hulsman, Martin Wosnik, Vlaho Petrović, Michael Hölling, and Martin Kühn
Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, https://doi.org/10.5194/wes-7-237-2022, 2022
Short summary
Short summary
Due to the possibility of mapping the wake fast at multiple locations with the WindScanner, a thorough understanding of the development of the wake is acquired at different inflow conditions and operational conditions. The lidar velocity data and the energy dissipation rate compared favourably with hot-wire data from previous experiments, lending credibility to the measurement technique and methodology used here. This will aid the process to further improve existing wake models.
Frederik Berger, David Onnen, Gerard Schepers, and Martin Kühn
Wind Energ. Sci., 6, 1341–1361, https://doi.org/10.5194/wes-6-1341-2021, https://doi.org/10.5194/wes-6-1341-2021, 2021
Short summary
Short summary
Dynamic inflow denotes the unsteady aerodynamic response to fast changes in rotor loading and leads to load overshoots. We performed a pitch step experiment with MoWiTO 1.8 in the large wind tunnel of ForWind – University of Oldenburg. We measured axial and tangential inductions with a recent method with a 2D-LDA system and performed load and wake measurements. These radius-resolved measurements allow for new insights into the dynamic inflow phenomenon.
Janna Kristina Seifert, Martin Kraft, Martin Kühn, and Laura J. Lukassen
Wind Energ. Sci., 6, 997–1014, https://doi.org/10.5194/wes-6-997-2021, https://doi.org/10.5194/wes-6-997-2021, 2021
Short summary
Short summary
Fluctuations in the power output of wind turbines are one of the major challenges in the integration and utilisation of wind energy. By analysing the power output fluctuations of wind turbine pairs in an offshore wind farm, we show that their correlation depends on their location within the wind farm and their inflow. The main outcome is that these correlation dependencies can be characterised by statistics of the power output of the wind turbines and sorted by a clustering algorithm.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Anantha Padmanabhan Kidambi Sekar, Marijn Floris van Dooren, Andreas Rott, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-16, https://doi.org/10.5194/wes-2021-16, 2021
Preprint withdrawn
Short summary
Short summary
Turbine-mounted lidars performing inflow scans can be used to optimise wind turbine performance and extend their lifetime. This paper introduces a new method to extract wind inflow information from a turbine-mounted scanning SpinnerLidar based on Proper Orthogonal Decomposition. This method offers a balance between simple reconstruction methods and complicated physics-based solvers. The results show that the model can be used for lidar assisted control, loads validation and turbulence studies.
Frauke Theuer, Marijn Floris van Dooren, Lueder von Bremen, and Martin Kühn
Wind Energ. Sci., 5, 1449–1468, https://doi.org/10.5194/wes-5-1449-2020, https://doi.org/10.5194/wes-5-1449-2020, 2020
Short summary
Short summary
Very short-term wind power forecasts are gaining increasing importance with the rising share of renewables in today's energy system. In this work, we developed a methodology to forecast wind power of offshore wind turbines on minute scales utilising long-range single-Doppler lidar measurements. The model was able to outperform persistence during unstable stratification in terms of deterministic and probabilistic scores, while it showed large shortcomings for stable atmospheric conditions.
Cited articles
Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An Analytical Model
for the Effect of Vertical Wind Veer on Wind Turbine Wakes, Energies, 11,
1838, https://doi.org/10.3390/en11071838, 2018. a
Ahmad, T., Basit, A., Ahsan, M., Coupiac, O., Girard, N., Kazemtabrizi, B., and
Matthews, P. C.: Implementation and Analyses of Yaw Based Coordinated
Control of Wind Farms, Energies, 12, 1266, https://doi.org/10.3390/en12071266, 2019. a
Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J.
Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2,
1988. a
Archer, C. L. and Vasel-Be-Hagh, A.: Wake steering via yaw control in
multi-turbine wind farms: Recommendations based on large-eddy simulation,
Sustain. Energy Technol. Assess., 33, 34–43,
https://doi.org/10.1016/j.seta.2019.03.002, 2019. a
Asmuth, H. and Korb, H.: WakeNet 0.1 – A Simple Three-dimensional Wake Model
Based on Convolutional Neural Networks, J. Phys.-Conf. Ser., 2265, 022066,
https://doi.org/10.1088/1742-6596/2265/2/022066, 2022. a, b
Barthelmie, R. J., Frandsen, S. T., Nielsen, M. N., Pryor, S. C., Rethore,
P.-E., and Jørgensen, H. E.: Modelling and measurements of power losses
and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind
farm, Wind Energy, 10, 517–528, https://doi.org/10.1002/we.238, 2007. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for
wind-turbine wakes, Renew. Energ., 70, 116–123,
https://doi.org/10.1016/j.renene.2014.01.002, 2014. a, b
Bastankhah, M., Shapiro, C. R., Shamsoddin, S., Gayme, D. F., and Meneveau, C.:
A vortex sheet based analytical model of the curled wake behind yawed wind
turbines, J. Fluid Mech., 933, A2, https://doi.org/10.1017/jfm.2021.1010, 2022. a, b
Bay, C. J., Fleming, P., Doekemeijer, B., King, J., Churchfield, M., and Mudafort, R.: Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model, Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, 2023. a
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR
Wind Speed Measurements, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561,
2017. a
Beck, H. and Kühn, M.: Temporal Up-Sampling of Planar Long-Range Doppler
LiDAR Wind Speed Measurements Using Space-Time Conversion, Remote Sens., 11,
867, https://doi.org/10.3390/rs11070867, 2019. a
Bertelè, M., Bottasso, C. L., Cacciola, S., Daher Adegas, F., and Delport, S.: Wind inflow observation from load harmonics, Wind Energ. Sci., 2, 615–640, https://doi.org/10.5194/wes-2-615-2017, 2017. a
Bertelè, M., Bottasso, C. L., and Schreiber, J.: Wind inflow observation from load harmonics: initial steps towards a field validation, Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021, 2021. a
Blondel, F. and Cathelain, M.: An alternative form of the super-Gaussian wind turbine wake model, Wind Energ. Sci., 5, 1225–1236, https://doi.org/10.5194/wes-5-1225-2020, 2020. a
Boccolini, M., Bossanyi, E., Bourne, S., Dombrowski, A., Ferraro, G., Harman,
K., Harrison, M., Hille, N., Landberg, L., Levick, T., Manjock, A., Mercer,
T., Neubert, A., Ruisi, R., and Skeen, N.: Wind Farm Control: The Route to
Bankability, Tech. rep., DNV,
https://www.dnv.com/Publications/wind-farm-control-198162 (last access: 10 May 2021),
2021. a
Bromm, M., Rott, A., Beck, H., Vollmer, L., Steinfeld, G., and Kühn, M.:
Field investigation on the influence of yaw misalignment on the propagation
of wind turbine wakes, Wind Energy, 21, 1011–1028, https://doi.org/10.1002/we.2210,
2018. a
Brugger, P., Carbajo Fuertes, F., Vahidzadeh, M., Markfort, C. D., and
Porté-Agel, F.: Characterization of Wind Turbine Wakes with Nacelle-Mounted
Doppler LiDARs and Model Validation in the Presence of Wind Veer, Remote
Sens., 11, 2247, https://doi.org/10.3390/rs11192247, 2019. a, b, c
Brugger, P., Debnath, M., Scholbrock, A., Fleming, P., Moriarty, P., Simley, E., Jager, D., Roadman, J., Murphy, M., Zong, H., and Porté-Agel, F.: Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models, Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, 2020. a, b, c, d, e
Carbajo Fuertes, F. and Porté-Agel, F.: Using a Virtual Lidar Approach to
Assess the Accuracy of the Volumetric Reconstruction of a Wind Turbine Wake,
Remote Sens., 10, 721, https://doi.org/10.3390/rs10050721, 2018. a
Doekemeijer, B. M., van der Hoek, D., and van Wingerden, J.-W.:
Closed-loop model-based wind farm control using FLORIS under time-varying
inflow conditions, Renew. Energ., 156, 719–730,
https://doi.org/10.1016/j.renene.2020.04.007, 2020. a, b
Doekemeijer, B. M., Kern, S., Maturu, S., Kanev, S., Salbert, B., Schreiber, J., Campagnolo, F., Bottasso, C. L., Schuler, S., Wilts, F., Neumann, T., Potenza, G., Calabretta, F., Fioretti, F., and van Wingerden, J.-W.: Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy, Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, 2021. a, b, c
Fleming, P., Gebraad, P. M. O., Lee, S., van Wingerden, J., Johnson, K.,
Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Simulation
comparison of wake mitigation control strategies for a two-turbine case,
Wind Energy, 18, 2135–2143, https://doi.org/10.1002/we.1810, 2015. a, b
Fleming, P., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S.,
Raach, S., Haizmann, F., and Schlipf, D.: Full-Scale Field Test of Wake
Steering, J. Phys.-Conf. Ser., 854, 012013,
https://doi.org/10.1088/1742-6596/854/1/012013, 2017a. a
Fleming, P., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of wake steering at an offshore wind farm, Wind Energ. Sci., 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, 2017b. a
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a, b, c
Fleming, P., Sinner, M., Young, T., Lannic, M., King, J., Simley, E., and Doekemeijer, B.: Experimental results of wake steering using fixed angles, Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, 2021. a, b, c
Fukunaga, K. and Hostetler, L.: The estimation of the gradient of a density
function, with applications in pattern recognition, IEEE T.
Inform. Theory, 21, 32–40, https://doi.org/10.1109/TIT.1975.1055330, 1975. a
Gebraad, P., Teeuwisse, F., Wingerden, J. v., Fleming, P., Ruben, S., Marden,
J., and Pao, L.: Wind plant power optimization through yaw controlusing a
parametric model for wake effects – a CFDsimulation study, Wind Energy, 19,
95–114, https://doi.org/10.1002/we.1822, 2016. a, b
Herges, T., Maniaci, D., Naughton, B., Mikkelsen, T., and Sjöholm, M.:
High resolution wind turbine wake measurements with a scanning lidar, J.
Phys.-Conf. Ser., 854, 012021, https://doi.org/10.1088/1742-6596/854/1/012021, 2017. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and
Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw
under uniform inflow conditions, J. Renew. Sustain. Ener., 8, 043301,
https://doi.org/10.1063/1.4955091, 2016. a, b, c
Howland, M. F., Lele, S. K., and Dabiri, J. O.: Wind farm power optimization
through wake steering, P. Natl. Acad. Sci. USA, 116, 14495–14500,
https://doi.org/10.1073/pnas.1903680116, 2019. a
Howland, M. F., Ghate, A. S., Lele, S. K., and Dabiri, J. O.: Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions, Wind Energ. Sci., 5, 1315–1338, https://doi.org/10.5194/wes-5-1315-2020, 2020. a, b
Hulsman, P., Sucameli, C., Petroviç, V., Rott, A., Gerds, A., and Kühn,
M.: Turbine power loss during yaw-misaligned free field tests at different
atmospheric conditions, J. Phys.-Conf. Ser., 2265, 032 074,
https://doi.org/10.1088/1742-6596/2265/3/032074, 2022a. a, b
Hulsman, P., Wosnik, M., Petrović, V., Hölling, M., and Kühn, M.: Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow, Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, 2022b. a
Jensen, N. O.: A note on wind generator interaction, Tech. Rep. Risø-M No.
2411, Risø National Laboratory,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf (last access: 17 July 2019),
1983. a
Jimenez, A., Crespo, A., and Migoya, E.: Application of a LES technique to
characterize the wake deflection of a wind turbine in yaw, Wind Energy, 13,
559–572, https://doi.org/10.1002/we.380, 2010. a
Jonkman, J. M. and Buhl Jr., M. L.: FAST User's Guide, Tech. Rep.
EL-500-38230, National Renewable Energy Laboratory, https://www.nrel.gov/docs/fy06osti/38230.pdf (last access: 10 April 2019), 2005. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW
Reference Wind Turbine for Offshore System Development, Tech. Rep.
TP-500-38060, National Renewable Energy Laboratory, https://doi.org/10.2172/947422,
2009. a
Kanev, S.: Dynamic wake steering and its impact on wind farm power production
and yaw actuator duty, Renew. Energ., 146, 9–15,
https://doi.org/10.1016/j.renene.2019.06.122, 2020. a
King, J., Fleming, P., King, R., Martínez-Tossas, L. A., Bay, C. J., Mudafort, R., and Simley, E.: Control-oriented model for secondary effects of wake steering, Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, 2021. a, b
Kragh, K. A. and Fleming, P. A.: Rotor Speed Dependent Yaw Control of Wind
Turbines Based on Empirical Data, in: 50th AIAA Aerospace Sciences Meeting,
9–12 January, Nashville, Tennessee, USA, https://doi.org/10.2514/6.2012-1018, 2012. a, b
Krüger, S., Steinfeld, G., Kraft, M., and Lukassen, L. J.: Validation of a coupled atmospheric–aeroelastic model system for wind turbine power and load calculations, Wind Energ. Sci., 7, 323–344, https://doi.org/10.5194/wes-7-323-2022, 2022. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a, b, c
Medici, D., Ivanell, S., Dahlberg, J., and Alfredsson, P.: The upstream flow
of a wind turbine: blockage effect, Wind Energy, 14, 691–697,
https://doi.org/10.1002/we.451, 2011. a
Niayifar, A. and Porté-Agel, F.: Analytical modeling of wind farms: A
new approach for power prediction, Energies, 9, 741,
https://doi.org/10.3390/en9090741, 2016. a, b
Purohit, S., Ng, E. Y. K., and Kabir, I. F. S. A.: Evaluation of three
potential machine learning algorithms for predicting the velocity and
turbulence intensity of a wind turbine wake, Renew. Energ., 184, 405–420,
https://doi.org/10.1016/j.renene.2021.11.097, 2022. a
Renganathan, S. A., Maulik, R., Letizia, S., and Iungo, G. V.: Data-driven wind
turbine wake modeling via probabilistic machine learning, Neural Comput.
Appl., 34, 6171–6186, https://doi.org/10.1007/s00521-021-06799-6, 2022. a
Rott, A., Doekemeijer, B., Seifert, J. K., van Wingerden, J.-W., and Kühn, M.: Robust active wake control in consideration of wind direction variability and uncertainty, Wind Energ. Sci., 3, 869–882, https://doi.org/10.5194/wes-3-869-2018, 2018. a
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw, Wind Energ. Sci., 2, 439–442, https://doi.org/10.5194/wes-2-439-2017, 2017. a, b
Schreiber, J., Bottasso, C. L., Salbert, B., and Campagnolo, F.: Improving wind farm flow models by learning from operational data, Wind Energ. Sci., 5, 647–673, https://doi.org/10.5194/wes-5-647-2020, 2020. a
Sengers, B. A. M.: Validation of an interpretable data-driven wake model using
lidar measurements from a field wake steering experiment, Zenodo [data set],
https://doi.org/10.5281/zenodo.7741395, 2023. a
Sengers, B. A. M. and Zech, M.: Model code Data-driven wAke steeRing surrogaTe
model (DART), Zenodo [code], https://doi.org/10.5281/zenodo.7900032, 2022. a
Sengers, B. A. M., Steinfeld, G., Heinemann, D., and Kühn, M.: A new
method to characterize the curled wake shape under yaw misalignment, J.
Phys.-Conf. Ser., 1618, 062050, https://doi.org/10.1088/1742-6596/1618/6/062050,
2020. a, b, c, d
Simley, E., Fleming, P., and King, J.: Design and analysis of a wake steering controller with wind direction variability, Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020, 2020. a
Simley, E., Fleming, P., Girard, N., Alloin, L., Godefroy, E., and Duc, T.: Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance, Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021, 2021a. a, b
Simley, E., Fleming, P., King, J., and Sinner, M.: Wake Steering Wind Farm
Control with Preview Wind Direction Information, in: P. Amer. Contr. Conf.,
25–28 May, New Orleans, Louisiana, USA, 1783–1789,
https://doi.org/10.23919/ACC50511.2021.9483008, 2021b. a
Ti, Z., Deng, X. W., and Yang, H.: Wake modeling of wind turbines using
machine learning, Appl. Energ., 257, 114025,
https://doi.org/10.1016/j.apenergy.2019.114025, 2020. a
Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso, J. Roy.
Stat. Soc. B. Met., 58, 267–288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x,
1996. a
topographic-map.com: Topographic map,
http://topographic-map.com (last access: 1 August 2022),
2022. a
Trabucchi, D.: Lidar Measurements and Engineering Modelling of Wind Turbine
Wakes, Dissertation, University of Oldenburg,
http://oops.uni-oldenburg.de/4671/1/PhD_Thesis_Trabucchi_2019_to_print_v2.pdf (last access: 15 January 2021),
2019. a
Trujillo, J. J., Seifert, J. K., Würth, I., Schlipf, D., and Kühn, M.: Full-field assessment of wind turbine near-wake deviation in relation to yaw misalignment, Wind Energ. Sci., 1, 41–53, https://doi.org/10.5194/wes-1-41-2016, 2016. a
van Wingerden, J.-W., Fleming, P. A., Göçmen, T., Eguinoa, I., M,
D. B., Dykes, K., Lawson, M., Simley, E., King, J., and Astrain, D.: Expert
Elicitation on Wind Farm Control, J. Phys.-Conf. Ser., 1618, 022025,
https://doi.org/10.1088/1742-6596/1618/2/022025, 2020. a
Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energ. Sci., 1, 129–141, https://doi.org/10.5194/wes-1-129-2016, 2016. a, b
Wagenaar, J., Machielse, L., and Schepers, J.: Controlling Wind in ECN's
Scaled Wind Farm, in: Proceeding of the EWEA Annual Meeting, 16–19 April,
Copenhagen, Denmark, https://repository.tno.nl/islandora/object/uuid:7121037f-28df-4aee-8575-89ca278d34eb (last access: 10 July 2021), 2012.
a
Wang, W., Yang, S., and Yang, Y.: An Improved Data-Efficiency Algorithm Based
on Combining Isolation Forest and Mean Shift for Anomaly Data Filtering in
Wind Power Curve, Energies, 15, 4918, https://doi.org/10.3390/en15134918, 2022. a
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
The optimal misalignment angles for wake steering are determined using wake models. Although...
Altmetrics
Final-revised paper
Preprint