Articles | Volume 8, issue 5
https://doi.org/10.5194/wes-8-747-2023
https://doi.org/10.5194/wes-8-747-2023
Research article
 | 
11 May 2023
Research article |  | 11 May 2023

Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment

Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn

Related authors

Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Increased power gains from wake steering control using preview wind direction information
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023,https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
A physically interpretable data-driven surrogate model for wake steering
Balthazar Arnoldus Maria Sengers, Matthias Zech, Pim Jacobs, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 7, 1455–1470, https://doi.org/10.5194/wes-7-1455-2022,https://doi.org/10.5194/wes-7-1455-2022, 2022
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind farm control
Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant
Peter Bachant, Peter Ireland, Brian Burrows, Chi Qiao, James Duncan, Danian Zheng, and Mohit Dua
Wind Energ. Sci., 9, 2235–2259, https://doi.org/10.5194/wes-9-2235-2024,https://doi.org/10.5194/wes-9-2235-2024, 2024
Short summary
Evaluating the potential of a wake steering co-design for wind farm layout optimization through a tailored genetic algorithm
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024,https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
On the importance of wind predictions in wake steering optimization
Elie Kadoche, Pascal Bianchi, Florence Carton, Philippe Ciblat, and Damien Ernst
Wind Energ. Sci., 9, 1577–1594, https://doi.org/10.5194/wes-9-1577-2024,https://doi.org/10.5194/wes-9-1577-2024, 2024
Short summary
On the power and control of a misaligned rotor – beyond the cosine law
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1547–1575, https://doi.org/10.5194/wes-9-1547-2024,https://doi.org/10.5194/wes-9-1547-2024, 2024
Short summary
Dynamic wind farm flow control using free-vortex wake models
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024,https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary

Cited articles

Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes, Energies, 11, 1838, https://doi.org/10.3390/en11071838, 2018. a
Ahmad, T., Basit, A., Ahsan, M., Coupiac, O., Girard, N., Kazemtabrizi, B., and Matthews, P. C.: Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms, Energies, 12, 1266, https://doi.org/10.3390/en12071266, 2019. a
Ainslie, J. F.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a
Archer, C. L. and Vasel-Be-Hagh, A.: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation, Sustain. Energy Technol. Assess., 33, 34–43, https://doi.org/10.1016/j.seta.2019.03.002, 2019. a
Asmuth, H. and Korb, H.: WakeNet 0.1 – A Simple Three-dimensional Wake Model Based on Convolutional Neural Networks, J. Phys.-Conf. Ser., 2265, 022066, https://doi.org/10.1088/1742-6596/2265/2/022066, 2022. a, b
Download
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Altmetrics
Final-revised paper
Preprint