Articles | Volume 9, issue 7
https://doi.org/10.5194/wes-9-1527-2024
https://doi.org/10.5194/wes-9-1527-2024
Research article
 | 
22 Jul 2024
Research article |  | 22 Jul 2024

Identification of electro-mechanical interactions in wind turbines

Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng

Related authors

Dynamic performance of a passively self-adjusting floating wind farm layout to increase the annual energy production
Mohammad Youssef Mahfouz, Ericka Lozon, Matthew Hall, and Po Wen Cheng
Wind Energ. Sci., 9, 1595–1615, https://doi.org/10.5194/wes-9-1595-2024,https://doi.org/10.5194/wes-9-1595-2024, 2024
Short summary
A Comprehensive Design Methodology of Shared Mooring Line Configurations for Assessing Mooring Costs and Performances of Floating Offshore Wind Turbines
Qi Pan, Dexing Liu, Feng Guo, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-44,https://doi.org/10.5194/wes-2024-44, 2024
Revised manuscript under review for WES
Short summary
Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
Wei Yu, Sheng Tao Zhou, Frank Lemmer, and Po Wen Cheng
Wind Energ. Sci., 9, 1053–1068, https://doi.org/10.5194/wes-9-1053-2024,https://doi.org/10.5194/wes-9-1053-2024, 2024
Short summary
Machine learning based virtual load sensors for mooring lines using motion and lidar measurements
Moritz Johann Gräfe, Vasilis Pettas, Nikolay Dimitrov, and Po Wen Cheng
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-25,https://doi.org/10.5194/wes-2024-25, 2024
Revised manuscript under review for WES
Short summary
Wind turbine rotors in surge motion: new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
Christian W. Schulz, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud
Wind Energ. Sci., 9, 665–695, https://doi.org/10.5194/wes-9-665-2024,https://doi.org/10.5194/wes-9-665-2024, 2024
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024,https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
A sensitivity-based estimation method for investigating control co-design relevance
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024,https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Validation of aeroelastic dynamic model of active trailing edge flap system tested on a 4.3 MW wind turbine
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024,https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci., 9, 697–719, https://doi.org/10.5194/wes-9-697-2024,https://doi.org/10.5194/wes-9-697-2024, 2024
Short summary
Gradient-based wind farm layout optimization with inclusion and exclusion zones
Javier Criado Risco, Rafael Valotta Rodrigues, Mikkel Friis-Møller, Julian Quick, Mads Mølgaard Pedersen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 9, 585–600, https://doi.org/10.5194/wes-9-585-2024,https://doi.org/10.5194/wes-9-585-2024, 2024
Short summary

Cited articles

Boy, F. and Hetzler, H.: A Co-energy Based Approach to Model the Rotordynamics of Electrical Machines, in: Mechanisms and Machine Science, vol. 63, Springer International Publishing, 190–204, ISBN 9783319992723, https://doi.org/10.1007/978-3-319-99272-3_14, 2019. a, b
Cardaun, M., Schelenz, R., Jacobs, G., and Duda, T.: Calculation of structure-borne sound in a direct drive wind turbine, Forschung im Ingenieurwesen/Engineering Research, 85, 165–171, https://doi.org/10.1007/s10010-021-00443-4, 2021. a, b
Comsol: COMSOL Multiphysics, 5.6th Edn., Comsol Multiphysics GmbH, https://www.comsol.com/ (last access: 25 January 2024), 2024. a
Delli Colli, V., Marignetti, F., and Attaianese, C.: Analytical and multiphysics approach to the optimal design of a 10-MW DFIG for direct-drive wind turbines, IEEE T. Indust. Electron., 59, 2791–2799, https://doi.org/10.1109/TIE.2011.2168790, 2012. a
Duda, T., Jacobs, G., and Bosse, D.: Investigation of Modelling Depths for an Electromechanical Simulation of a Direct-Drive Generator Considering Parasitic Airgap Forces and External Loads, J. Phys.: Con. Ser., 1222, 012029, https://doi.org/10.1088/1742-6596/1222/1/012029, 2019. a, b
Download
Short summary
Large direct-drive wind turbines, with a multi-megawatt power rating, face design challenges. Moving towards a more system-oriented design approach could potentially reduce mass and costs. Exploiting the full design space, though, may invoke interaction mechanisms, which have been neglected in the past. Based on coupled simulations, this work derives a better understanding of the electro-mechanical interaction mechanisms and identifies potential for design relevance.
Altmetrics
Final-revised paper
Preprint