Articles | Volume 9, issue 4
https://doi.org/10.5194/wes-9-963-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-963-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Andrea N. Hahmann
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Jake Badger
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Alfredo Peña
Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Related authors
Sima Hamzeloo, Xiaoli Guo Larsén, Alfredo Peña, Jana Fischereit, and Oscar García-Santiago
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-267, https://doi.org/10.5194/wes-2025-267, 2026
Preprint under review for WES
Short summary
Short summary
We studied how winds and ocean waves affect each other during a North Sea storm. Using a multiscale approach that captures processes from kilometers down to meters, we linked wind and wave models and compared the results with real measurements. Our aim was to improve current simulation methods, and the findings show that this detailed approach provides more accurate storm predictions up to 100 m height.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022, https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Short summary
We explore the changes in wind energy resources in northern Europe using output from simulations from the Climate Model Intercomparison Project (CMIP6) under the high-emission scenario. Our results show that climate change does not particularly alter annual energy production in the North Sea but could affect the seasonal distribution of these resources, significantly reducing energy production during the summer from 2031 to 2050.
Sima Hamzeloo, Xiaoli Guo Larsén, Alfredo Peña, Jana Fischereit, and Oscar García-Santiago
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-267, https://doi.org/10.5194/wes-2025-267, 2026
Preprint under review for WES
Short summary
Short summary
We studied how winds and ocean waves affect each other during a North Sea storm. Using a multiscale approach that captures processes from kilometers down to meters, we linked wind and wave models and compared the results with real measurements. Our aim was to improve current simulation methods, and the findings show that this detailed approach provides more accurate storm predictions up to 100 m height.
Jana Fischereit, Bjarke T. E. Olsen, Marc Imberger, Henrik Vedel, Kristian H. Møller, Andrea N. Hahmann, and Xiaoli Guo Larsén
EGUsphere, https://doi.org/10.5194/egusphere-2025-5407, https://doi.org/10.5194/egusphere-2025-5407, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We evaluated how operating wind farms influence the atmosphere in numerical weather prediction using two wind farm parameterizations in the HARMONIE-AROME model, applied by over 10 European weather services. Accurate yield forecasts require including both onshore and offshore turbines. Wind turbines slightly alter near-surface temperature (<1 K on average). We also present an open-access European wind turbine dataset combining multiple data sources.
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder
Wind Energ. Sci., 10, 733–754, https://doi.org/10.5194/wes-10-733-2025, https://doi.org/10.5194/wes-10-733-2025, 2025
Short summary
Short summary
This study analyses wind speed data at heights up to 500 m to support the design of future large offshore wind turbines and airborne wind energy systems. We compared three wind models (ERA5, NORA3, and NEWA) with lidar measurements at five sites using four performance metrics. ERA5 and NORA3 performed equally well offshore, with NORA3 typically outperforming the other two models onshore. More generally, the optimal choice of model depends on site, altitude, and evaluation criteria.
Alfredo Peña, Ginka G. Yankova, and Vasiliki Mallini
Wind Energ. Sci., 10, 83–102, https://doi.org/10.5194/wes-10-83-2025, https://doi.org/10.5194/wes-10-83-2025, 2025
Short summary
Short summary
Lidars are vastly used in wind energy, but most users struggle when interpreting lidar turbulence measures. Here, we explain the difficulty in converting them into standard measurements. We show two ways of converting lidar to in situ turbulence measurements, both using neural networks: one of them is based on physics, while the other is purely data-driven. They show promising results when compared to high-quality turbulence measurements from a tall mast.
Wei Fu, Feng Guo, David Schlipf, and Alfredo Peña
Wind Energ. Sci., 8, 1893–1907, https://doi.org/10.5194/wes-8-1893-2023, https://doi.org/10.5194/wes-8-1893-2023, 2023
Short summary
Short summary
A high-quality preview of the rotor-effective wind speed is a key element of the benefits of feedforward pitch control. We model a one-beam lidar in the spinner of a 15 MW wind turbine. The lidar rotates with the wind turbine and scans the inflow in a circular pattern, mimicking a multiple-beam lidar at a lower cost. We found that a spinner-based one-beam lidar provides many more control benefits than the one on the nacelle, which is similar to a four-beam nacelle lidar for feedforward control.
Alessandro Sebastiani, James Bleeg, and Alfredo Peña
Wind Energ. Sci., 8, 1795–1808, https://doi.org/10.5194/wes-8-1795-2023, https://doi.org/10.5194/wes-8-1795-2023, 2023
Short summary
Short summary
The power curve of a wind turbine indicates the turbine power output in relation to the wind speed. Therefore, power curves are critically important to estimate the production of future wind farms as well as to assess whether operating wind farms are functioning correctly. Since power curves are often measured in wind farms, they might be affected by the interactions between the turbines. We show that these effects are not negligible and present a method to correct for them.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022, https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Short summary
We explore the changes in wind energy resources in northern Europe using output from simulations from the Climate Model Intercomparison Project (CMIP6) under the high-emission scenario. Our results show that climate change does not particularly alter annual energy production in the North Sea but could affect the seasonal distribution of these resources, significantly reducing energy production during the summer from 2031 to 2050.
Graziela Luzia, Andrea N. Hahmann, and Matti Juhani Koivisto
Wind Energ. Sci., 7, 2255–2270, https://doi.org/10.5194/wes-7-2255-2022, https://doi.org/10.5194/wes-7-2255-2022, 2022
Short summary
Short summary
This paper presents a comprehensive validation of time series produced by a mesoscale numerical weather model, a global reanalysis, and a wind atlas against observations by using a set of metrics that we present as requirements for wind energy integration studies. We perform a sensitivity analysis on the numerical weather model in multiple configurations, such as related to model grid spacing and nesting arrangements, to define the model setup that outperforms in various time series aspects.
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022, https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Short summary
The power performance of a wind turbine is often tested with the turbine standing in a row of several wind turbines, as it is assumed that the performance is not affected by the neighbouring turbines. We test this assumption with both simulations and measurements, and we show that the power performance can be either enhanced or lowered by the neighbouring wind turbines. Consequently, we also show how power performance testing might be biased when performed on a row of several wind turbines.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021, https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Short summary
We carry out a probabilistic calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution nacelle-based lidar measurements of the wake flow field. The experimental data were collected from the Scaled Wind Farm Technology (SWiFT) facility in Texas. The analysis includes the velocity deficit, wake-added turbulence, and wake meandering features under various inflow wind and atmospheric-stability conditions.
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021, https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
Short summary
We define two lidar-based procedures for improving the accuracy of wind turbine load assessment under wake conditions. The first approach incorporates lidar observations directly into turbulence fields serving as inputs for aeroelastic simulations; the second approach imposes lidar-fitted wake deficit time series on the turbulence fields. The uncertainty in the lidar-based power and load predictions is quantified for a variety of scanning configurations and atmosphere turbulence conditions.
Alfredo Peña, Branko Kosović, and Jeffrey D. Mirocha
Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, https://doi.org/10.5194/wes-6-645-2021, 2021
Short summary
Short summary
We investigate the ability of a community-open weather model to simulate the turbulent atmosphere by comparison with measurements from a 250 m mast at a flat site in Denmark. We found that within three main atmospheric stability regimes, idealized simulations reproduce closely the characteristics of the observations with regards to the mean wind, direction, turbulent fluxes, and turbulence spectra. Our work provides foundation for the use of the weather model in multiscale real-time simulations.
Cited articles
Abkar, M. and Porté-Agel, F.: A New Wind-Farm Parameterization for Large-Scale Atmospheric Models, J. Renew. Sustain. Energ., 7, 013121, https://doi.org/10.1063/1.4907600, 2015. a
Akhtar, N., Geyer, B., Rockel, B., Sommer, P. S., and Schrum, C.: Accelerating Deployment of Offshore Wind Energy Alter Wind Climate and Reduce Future Power Generation Potentials, Sci. Rep., 11, 11826, https://doi.org/10.1038/s41598-021-91283-3, 2021. a
Ali, K., Schultz, D. M., Revell, A., Stallard, T., and Ouro, P.: Assessment of Five Wind-Farm Parameterizations in the Weather Research and Forecasting Model: A Case Study of Wind Farms in the North Sea, Mon. Weather Rev., 151, 2333–2359, https://doi.org/10.1175/MWR-D-23-0006.1, 2023. a
Badger, J., Imberger, M., Volker, P., Kleidon, A., and Sonja, G.: Making the Most of Offshore Wind: Re-Evaluating the Potential of Offshore Wind in the German North Sea, Tech. rep., Agora Energiewende, Agora Verkehrswende, Technical University of Denmark and Max-Planck-Institute for Biogeochemistry, Publication number 176/01-S-2020/EN, https://www.agora-energiewende.org/publications/making-the-most-of-offshore-wind (last access: 3 June 2023), 2020. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A.: The DTU 10-MW Reference Wind Turbine, Tech. rep., DTU Wind Energy, https://orbit.dtu.dk/en/publications/the-dtu-10-mw-reference-wind-turbine (last access: 28 May 2023), 2013. a, b, c
Bodini, N., Optis, M., Rossol, M., Rybchuk, A., and Redfern, S.: 2023 National Offshore Wind Data Set (NOW-23), OEDI [data set], https://doi.org/10.25984/1821404, 2020. a
Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O., Mortensen, N. G., Kelly, M., Larsén, X. G., Olsen, B. T., Floors, R., Lizcano, G., Casso, P., Lacave, O., Bosch, A., Bauwens, I., Knight, O. J., van Loon, A. P., Fox, R., Parvanyan, T., Hansen, S. B. K., Heathfield, D., Onninen, M., and Drummond, R.: The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application, B. Am. Meteorol. Soc., 104, E1507–E1525, https://doi.org/10.1175/BAMS-D-21-0075.1, 2023. a
Deardorff, J. W.: Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a, b
Eriksson, O., Lindvall, J., Breton, S.-P., and Ivanell, S.: Wake Downstream of the Lillgrund Wind Farm – A Comparison between LES Using the Actuator Disc Method and a Wind Farm Parametrization in WRF, J. Phys.: Conf. Ser., 625, 012028, https://doi.org/10.1088/1742-6596/625/1/012028, 2015. a
Esb: Esbjerg Declaration on the North Seas as Europe's Green Power Plant, https://en.kefm.dk/news/news-archive/2022/may/historic-declaration-can-provide-230-million-european (last access: 5 September 2023), 2022. a
Fischereit, J., Brown, R., Larsén, X. G., Badger, J., and Hawkes, G.: Review of Mesoscale Wind-Farm Parametrizations and Their Applications, Bound.-Lay. Meteorol., 182, 175–224, https://doi.org/10.1007/s10546-021-00652-y, 2022a. a, b, c
Fischereit, J., Larsén, X. G., and Hahmann, A. N.: Climatic Impacts of Wind-Wave-Wake Interactions in Offshore Wind Farms, Front. Energ. Res., 10, 881459, https://doi.org/10.3389/fenrg.2022.881459, 2022b. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model, Mon. Weather Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012. a, b, c
García-Santiago, O.: Input files for “Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations”, Technical University of Denmark [data set], https://doi.org/10.11583/DTU.25368505, 2024. a
Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The Making of the New European Wind Atlas – Part 1: Model Sensitivity, Geosci Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020. a
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918, https://doi.org/10.1175/MWR-D-11-00056.1, 2012. a
Juliano, T. W., Kosović, B., Jiménez, P. A., Eghdami, M., Haupt, S. E., and Martilli, A.: “Gray Zone” Simulations Using a Three-Dimensional Planetary Boundary Layer Parameterization in the Weather Research and Forecasting Model, Mon. Weather Rev., 150, 1585–1619, https://doi.org/10.1175/MWR-D-21-0164.1, 2022. a
Kale, B., Buckingham, S., van Beeck, J., and Cuerva-Tejero, A.: Implementation of a Generalized Actuator Disk Model into WRF v4.3: A Validation Study for a Real-Scale Wind Turbine, Renew. Energy, 197, 810–827, https://doi.org/10.1016/j.renene.2022.07.119, 2022. a, b
Kosović, B. and Curry, J. A.: A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer, J. Atmos. Sci., 57, 1052–1068, https://doi.org/10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2, 2000. a
Kosović, B., Munoz, P. J., Juliano, T. W., Martilli, A., Eghdami, M., Barros, A. P., and Haupt, S. E.: Three-Dimensional Planetary Boundary Layer Parameterization for High-Resolution Mesoscale Simulations, J. Phys.: Conf. Ser., 1452, 012080, https://doi.org/10.1088/1742-6596/1452/1/012080, 2020. a
Larsén, X. G. and Fischereit, J.: A Case Study of Wind Farm Effects Using Two Wake Parameterizations in the Weather Research and Forecasting (WRF) Model (V3.7.1) in the Presence of Low-Level Jets, Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, 2021. a, b, c, d
Lee, J. C. Y. and Lundquist, J. K.: Evaluation of the Wind Farm Parameterization in the Weather Research and Forecasting Model (Version 3.8.1) with Meteorological and Turbine Power Data, Geosci. Model Dev., 10, 4229–4244, https://doi.org/10.5194/gmd-10-4229-2017, 2017. a
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs and Consequences of Wind Turbine Wake Effects Arising from Uncoordinated Wind Energy Development, Nat. Energy, 4, 26–34, https://doi.org/10.1038/s41560-018-0281-2, 2019. a
Maas, O. and Raasch, S.: Wake Properties and Power Output of Very Large Wind Farms for Different Meteorological Conditions and Turbine Spacings: A Large-Eddy Simulation Case Study for the German Bight, Wind Energ. Sci., 7, 715–739, https://doi.org/10.5194/wes-7-715-2022, 2022. a
Mikkelsen, R. F.: Actuator Disc Methods Applied to Wind Turbines, PhD thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, https://orbit.dtu.dk/en/publications/actuator-disc-methods-applied-to-wind-turbines (last access: 4 June 2023), 2004. a
Mirocha, J. D., Kosovic, B., Aitken, M. L., and Lundquist, J. K.: Implementation of a Generalized Actuator Disk Wind Turbine Model into the Weather Research and Forecasting Model for Large-Eddy Simulation Applications, J. Renew. Sustain. Energ., 6, 013104, https://doi.org/10.1063/1.4861061, 2014. a, b, c, d
Mirocha, J. D., Churchfield, M. J., Muñoz-Esparza, D., Rai, R. K., Feng, Y., Kosović, B., Haupt, S. E., Brown, B., Ennis, B. L., Draxl, C., Sanz Rodrigo, J., Shaw, W. J., Berg, L. K., Moriarty, P. J., Linn, R. R., Kotamarthi, V. R., Balakrishnan, R., Cline, J. W., Robinson, M. C., and Ananthan, S.: Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications, Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018, 2018. a, b, c
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer, J. Meteorol. Soc. Jpn. Ser. II, 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009. a, b
Olsen, B. T., Hahmann, A. N., Sempreviva, A. M., Badger, J., and Jørgensen, H. E.: An Intercomparison of Mesoscale Models at Simple Sites for Wind Energy Applications, Wind Energ. Sci., 2, 211–228, https://doi.org/10.5194/wes-2-211-2017, 2017. a
Ost: Ostend Declaration on the North Seas as Europe's Green Power Plant, https://northseasummit.fedbook.prd.excom.fgov.be/en/ostend-declaration (last access: 5 September 2023), 2023. a
Pan, Y. and Archer, C. L.: A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models, Bound.-Lay. Meteorol., 168, 469–495, https://doi.org/10.1007/s10546-018-0351-9, 2018. a
Peña, A., Kosović, B., and Mirocha, J. D.: Evaluation of Idealized Large-Eddy Simulations Performed with the Weather Research and Forecasting Model Using Turbulence Measurements from a 250 m Meteorological Mast, Wind Energ. Sci., 6, 645–661, https://doi.org/10.5194/wes-6-645-2021, 2021. a, b, c
Peña, A., García-Santiago, O., Kosović, B., Mirocha, J. D., and Juliano, T. W.: Can We yet Do a Fairer and More Complete Validation of Wind Farm Parametrizations in the WRF Model?, J. Phys.: Conf. Ser., 2505, 012024, https://doi.org/10.1088/1742-6596/2505/1/012024, 2023. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59, https://doi.org/10.1007/s10546-019-00473-0, 2020. a
Pryor, S. C., Shepherd, T. J., Volker, P. J. H., Hahmann, A. N., and Barthelmie, R. J.: “Wind Theft” from Onshore Wind Turbine Arrays: Sensitivity to Wind Farm Parameterization and Resolution, J. Appl. Meteorol. Clim., 59, 153–174, https://doi.org/10.1175/JAMC-D-19-0235.1, 2020. a
Pryor, S. C., Barthelmie, R. J., Shepherd, T. J., Hahmann, A. N., and Santiago, O. M. G.: Wakes in and between Very Large Offshore Arrays, J. Phys.: Conf. Ser., 2265, 022037, https://doi.org/10.1088/1742-6596/2265/2/022037, 2022. a
Rybchuk, A., Juliano, T. W., Lundquist, J. K., Rosencrans, D., Bodini, N., and Optis, M.: The Sensitivity of the Fitch Wind Farm Parameterization to a Three-Dimensional Planetary Boundary Layer Scheme, Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022, 2022. a, b
Shen, W. Z., Mikkelsen, R., Sørensen, J. N., and Bak, C.: Tip Loss Corrections for Wind Turbine Computations, Wind Energy, 8, 457–475, https://doi.org/10.1002/we.153, 2005. a
Shepherd, T. J., Barthelmie, R. J., and Pryor, S. C.: Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF, J. Appl. Meteorol. Clim., 59, 333–361, https://doi.org/10.1175/JAMC-D-19-0135.1, 2020. a
Simon, J. S., Zhou, B., Mirocha, J. D., and Chow, F. K.: Explicit Filtering and Reconstruction to Reduce Grid Dependence in Convective Boundary Layer Simulations Using WRF-LES, Mon. Weather Rev., 147, 1805–1821, https://doi.org/10.1175/MWR-D-18-0205.1, 2019. a
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D., and Huang, X.-Y.: A Description of the Advanced Research WRF Model Version 4.3, Tech. Rep. NCAR/TN-556+STR), NCAR/UCAR [code], https://doi.org/10.5065/1dfh-6p97, 2021. a, b
Tennekes, H. and Lumley, J. L.: A First Course in Turbulence, MIT Press, ISBN 978-0-262-53630-1, 1972. a
Vanderwende, B. J., Kosović, B., Lundquist, J. K., and Mirocha, J. D.: Simulating Effects of a Wind-Turbine Array Using LES and RANS, J. Adv. Model Earth Syst., 8, 1376–1390, https://doi.org/10.1002/2016MS000652, 2016. a
Wu, S., Archer, C. L., and Mirocha, J. D.: New Insights on Wind Turbine Wakes from Large-Eddy Simulation: Wake Contraction, Dual Nature, and Temperature Effects, Wind Energy, https://doi.org/10.1002/we.2827, in press, 2023. a
Short summary
This study compares the results of two wind farm parameterizations (WFPs) in the Weather Research and Forecasting model, simulating a two-turbine array under three atmospheric stabilities with large-eddy simulations. We show that the WFPs accurately depict wind speeds either near turbines or in the far-wake areas, but not both. The parameterizations’ performance varies by variable (wind speed or turbulent kinetic energy) and atmospheric stability, with reduced accuracy in stable conditions.
This study compares the results of two wind farm parameterizations (WFPs) in the Weather...
Altmetrics
Final-revised paper
Preprint