Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1469–1485, 2020
https://doi.org/10.5194/wes-5-1469-2020

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Wind Energ. Sci., 5, 1469–1485, 2020
https://doi.org/10.5194/wes-5-1469-2020

Research article 05 Nov 2020

Research article | 05 Nov 2020

The digital terrain model in the computational modelling of the flow over the Perdigão site: the appropriate grid size

José M. L. M. Palma et al.

Related authors

Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments
Nikola Vasiljević, José M. L. M. Palma, Nikolas Angelou, José Carlos Matos, Robert Menke, Guillaume Lea, Jakob Mann, Michael Courtney, Luis Frölen Ribeiro, and Vitor M. M. G. C. Gomes
Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017,https://doi.org/10.5194/amt-10-3463-2017, 2017
Short summary

Related subject area

Wind and turbulence
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021,https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
On turbulence models and lidar measurements for wind turbine control
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021,https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021,https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021,https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary

Cited articles

Alves, J.: Perdigão Terrestrial Survey (tower 20/tse04), Tech. rep., Low Edge Consult Lda, Portugal, terrestrial survey around tower 20/tse04, by Low Edge Consult Lda, under contract, 2018. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.20), https://doi.org/10.34626/uporto/gvtg-0g24, 2020a. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.40), https://doi.org/10.34626/uporto/ybwb-es40, 2020b. a
Batista, V., Gomes, V. and Palma, J.: Perdigão: computational mesh (ALS.NE.80), https://doi.org/10.34626/uporto/mwd6-9h81, 2020c. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.SW.20), https://doi.org/10.34626/uporto/4t5v-r909, 2020d. a
Download
Short summary
The digital terrain model is the first input in the computational modelling of atmospheric flows. The ability of thee meshes (high-, medium- and low-resolution) to replicate the Perdigão experiment site was appraised in two ways: by their ability to replicate the terrain attributes, elevation and slope and by their effect on the wind flow computational results. At least 40 m horizontal resolution is required in computational modelling of the flow over Perdigão.