Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1469-2020
https://doi.org/10.5194/wes-5-1469-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

The digital terrain model in the computational modelling of the flow over the Perdigão site: the appropriate grid size

José M. L. M. Palma, Carlos A. M. Silva, Vítor C. Gomes, Alexandre Silva Lopes, Teresa Simões, Paula Costa, and Vasco T. P. Batista

Related authors

Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments
Nikola Vasiljević, José M. L. M. Palma, Nikolas Angelou, José Carlos Matos, Robert Menke, Guillaume Lea, Jakob Mann, Michael Courtney, Luis Frölen Ribeiro, and Vitor M. M. G. C. Gomes
Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017,https://doi.org/10.5194/amt-10-3463-2017, 2017
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Alves, J.: Perdigão Terrestrial Survey (tower 20/tse04), Tech. rep., Low Edge Consult Lda, Portugal, terrestrial survey around tower 20/tse04, by Low Edge Consult Lda, under contract, 2018. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.20), https://doi.org/10.34626/uporto/gvtg-0g24, 2020a. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.40), https://doi.org/10.34626/uporto/ybwb-es40, 2020b. a
Batista, V., Gomes, V. and Palma, J.: Perdigão: computational mesh (ALS.NE.80), https://doi.org/10.34626/uporto/mwd6-9h81, 2020c. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.SW.20), https://doi.org/10.34626/uporto/4t5v-r909, 2020d. a
Download
Short summary
The digital terrain model is the first input in the computational modelling of atmospheric flows. The ability of thee meshes (high-, medium- and low-resolution) to replicate the Perdigão experiment site was appraised in two ways: by their ability to replicate the terrain attributes, elevation and slope and by their effect on the wind flow computational results. At least 40 m horizontal resolution is required in computational modelling of the flow over Perdigão.
Altmetrics
Final-revised paper
Preprint