Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1469–1485, 2020
https://doi.org/10.5194/wes-5-1469-2020

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Wind Energ. Sci., 5, 1469–1485, 2020
https://doi.org/10.5194/wes-5-1469-2020

Research article 05 Nov 2020

Research article | 05 Nov 2020

The digital terrain model in the computational modelling of the flow over the Perdigão site: the appropriate grid size

José M. L. M. Palma et al.

Related authors

Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments
Nikola Vasiljević, José M. L. M. Palma, Nikolas Angelou, José Carlos Matos, Robert Menke, Guillaume Lea, Jakob Mann, Michael Courtney, Luis Frölen Ribeiro, and Vitor M. M. G. C. Gomes
Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017,https://doi.org/10.5194/amt-10-3463-2017, 2017
Short summary

Related subject area

Wind and turbulence
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021,https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021,https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021,https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021,https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary

Cited articles

Alves, J.: Perdigão Terrestrial Survey (tower 20/tse04), Tech. rep., Low Edge Consult Lda, Portugal, terrestrial survey around tower 20/tse04, by Low Edge Consult Lda, under contract, 2018. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.20), https://doi.org/10.34626/uporto/gvtg-0g24, 2020a. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.NE.40), https://doi.org/10.34626/uporto/ybwb-es40, 2020b. a
Batista, V., Gomes, V. and Palma, J.: Perdigão: computational mesh (ALS.NE.80), https://doi.org/10.34626/uporto/mwd6-9h81, 2020c. a
Batista, V., Gomes, V., and Palma, J.: Perdigão: computational mesh (ALS.SW.20), https://doi.org/10.34626/uporto/4t5v-r909, 2020d. a
Download
Short summary
The digital terrain model is the first input in the computational modelling of atmospheric flows. The ability of thee meshes (high-, medium- and low-resolution) to replicate the Perdigão experiment site was appraised in two ways: by their ability to replicate the terrain attributes, elevation and slope and by their effect on the wind flow computational results. At least 40 m horizontal resolution is required in computational modelling of the flow over Perdigão.