Articles | Volume 5, issue 4
Wind Energ. Sci., 5, 1663–1678, 2020
https://doi.org/10.5194/wes-5-1663-2020
Wind Energ. Sci., 5, 1663–1678, 2020
https://doi.org/10.5194/wes-5-1663-2020

Research article 26 Nov 2020

Research article | 26 Nov 2020

Mitigation of offshore wind power intermittency by interconnection of production sites

Ida Marie Solbrekke et al.

Related authors

The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021,https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary

Related subject area

Wind and turbulence
The 3 km Norwegian reanalysis (NORA3) – a validation of offshore wind resources in the North Sea and the Norwegian Sea
Ida Marie Solbrekke, Asgeir Sorteberg, and Hilde Haakenstad
Wind Energ. Sci., 6, 1501–1519, https://doi.org/10.5194/wes-6-1501-2021,https://doi.org/10.5194/wes-6-1501-2021, 2021
Short summary
On turbulence models and lidar measurements for wind turbine control
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021,https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data
Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher
Wind Energ. Sci., 6, 1473–1490, https://doi.org/10.5194/wes-6-1473-2021,https://doi.org/10.5194/wes-6-1473-2021, 2021
Short summary
On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus
Vasilis Pettas, Matthias Kretschmer, Andrew Clifton, and Po Wen Cheng
Wind Energ. Sci., 6, 1455–1472, https://doi.org/10.5194/wes-6-1455-2021,https://doi.org/10.5194/wes-6-1455-2021, 2021
Short summary
Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling
Rogier Floors, Merete Badger, Ib Troen, Kenneth Grogan, and Finn-Hendrik Permien
Wind Energ. Sci., 6, 1379–1400, https://doi.org/10.5194/wes-6-1379-2021,https://doi.org/10.5194/wes-6-1379-2021, 2021
Short summary

Cited articles

Archer, C. L. and Jacobson, M. Z.: Supplying baseload power and reducing transmission requirements by interconnecting wind farms, J. Appl. Meteorol. Clim., 46, 1701–1717, https://doi.org/10.1175/2007JAMC1538.1, 2007. a, b
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a
Barstad, I., Sorteberg, A., and Mesquita, M. D. S.: Present and future offshore wind power potential in northern Europe based on downscaled global climate runs with adjusted SST and sea ice cover, Renew. Energ., 44, 398–405, https://doi.org/10.1016/j.renene.2012.02.008, 2012. a
Berge, E., Byrkjedal, Ø., Ydersbond, Y., and Kindler, D.: Modelling of offshore wind resources. Comparison of a meso-scale model and measurements from FINO 1 and North Sea oil rigs, in: European Wind Energy Conference and Exhibition EWEC, 16–19 March 2009, Marseille, France, 2009. a
Bosch, J., Staffell, I., and Hawkes, A. D.: Temporally explicit and spatially resolved global offshore wind energy potentials, Energy, 163, 766–781, https://doi.org/10.1016/j.energy.2018.08.153, 2018. a
Download
Short summary
The potential of collective offshore wind power is quantified using 16 years of hourly wind speed observations. Wind power intermittency is reduced through a hypothetical electricity grid connecting five sites at the Norwegian continental shelf. We identify large-scale atmospheric situations resulting in long-term periods of power shutdown. Wind power variability and risk measures decrease in an interconnected wind power system.