Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1441-2022
https://doi.org/10.5194/wes-7-1441-2022
Research article
 | 
13 Jul 2022
Research article |  | 13 Jul 2022

High-resolution offshore wind resource assessment at turbine hub height with Sentinel-1 synthetic aperture radar (SAR) data and machine learning

Louis de Montera, Henrick Berger, Romain Husson, Pascal Appelghem, Laurent Guerlou, and Mauricio Fragoso

Related authors

Validation of Sentinel-1 offshore winds and average wind power estimation around Ireland
Louis de Montera, Tiny Remmers, Ross O'Connell, and Cian Desmond
Wind Energ. Sci., 5, 1023–1036, https://doi.org/10.5194/wes-5-1023-2020,https://doi.org/10.5194/wes-5-1023-2020, 2020
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024,https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024,https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary

Cited articles

Ahsbahs, T., Badger, M., Karagali, I., and Larsén, X. G.: Validation of Sentinel-1A SAR coastal wind speeds against scanning LiDAR, Remote Sens.-Basel, 9, 552, https://doi.org/10.3390/rs9060552, 2017. 
Ahsbahs, T., Maclaurin, G., Draxl, C., Jackson, C. R., Monaldo, F., and Badger, M.: US East Coast synthetic aperture radar wind atlas for offshore wind energy, Wind Energ. Sci., 5, 1191–1210, https://doi.org/10.5194/wes-5-1191-2020, 2020. 
Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.: Extrapolating Satellite Winds to Turbine Operating Heights, J. Appl. Meteorol. Clim., 55, 975–991, https://doi.org/10.1175/JAMC-D-15-0197.1, 2016. 
Badger, M., Ahsbahs, T. T., Maule, P., and Karagali, I.: Inter-calibration of SAR data series for offshore wind resource assessment, Remote Sens. Environ., 232, 111316, https://doi.org/10.1016/j.rse.2019.111316, 2019. 
Bentamy, A. and Croize-Fillon, D.: Spatial and temporal characteristics of wind and wind power off the coasts of Brittany, Renew. Energ., 66, 670–679, https://doi.org/10.1016/j.renene.2014.01.012, 2014. 
Download
Short summary
A novel method for estimating offshore wind resources at turbine hub height with synthetic aperture radar (SAR) satellites is presented. The machine learning algorithm uses as input geometrical parameters of the SAR sensors and parameters related to atmospheric stability. It is trained with Doppler wind lidar vertical profiles. The extractable wind power accuracy up to 200 m is within 3 %, and SAR can resolve the coastal wind gradient, unlike the Weather Research and Forecasting numerical mode.
Altmetrics
Final-revised paper
Preprint