Articles | Volume 7, issue 4
https://doi.org/10.5194/wes-7-1605-2022
https://doi.org/10.5194/wes-7-1605-2022
Research article
 | 
03 Aug 2022
Research article |  | 03 Aug 2022

Lidar-assisted model predictive control of wind turbine fatigue via online rainflow counting considering stress history

Stefan Loew and Carlo L. Bottasso

Related authors

Adaptive economic wind turbine control
Abhinav Anand and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-101,https://doi.org/10.5194/wes-2025-101, 2025
Preprint under review for WES
Short summary
A wind turbine digital shadow for complex inflow conditions
Hadi Hoghooghi and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-98,https://doi.org/10.5194/wes-2025-98, 2025
Preprint under review for WES
Short summary
A robust active power control algorithm to maximize wind farm power tracking margins in waked conditions
Simone Tamaro, Filippo Campagnolo, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-66,https://doi.org/10.5194/wes-2025-66, 2025
Preprint under review for WES
Short summary
Wind farm inertia forecasting accounting for wake losses, control strategies, and operational constraints
Andre Thommessen, Abhinav Anand, Christoph M. Hackl, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-72,https://doi.org/10.5194/wes-2025-72, 2025
Preprint under review for WES
Short summary
Economic lifetime-aware wind farm control
Abhinav Anand, Robert Braunbehrens, Adrien Guilloré, and Carlo L. Bottasso
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-67,https://doi.org/10.5194/wes-2025-67, 2025
Revised manuscript has not been submitted
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a
Anand, A.: Optimal Control of Battery Energy Storage System for Grid Integration of Wind Turbines, Master's thesis, TU Munich, Munich, 2020. a
ASTM International: Standard practices for cycle counting in fatigue analysis (ASTM 1049-85), https://doi.org/10.1520/E1049-85R17, 1985. a, b
Barradas-Berglind, J. d. J., Wisniewski, R., and Soltani, M.: Fatigue damage estimation and data-based control for wind turbines, IET Control Theory & Applications, 9, 1042–1050, https://doi.org/10.1049/iet-cta.2014.0730, 2015. a, b, c
Barradas-Berglind, J. J. and Wisniewski, R.: Representation of fatigue for wind turbine control, Wind Energy, 19, 2189–2203, https://doi.org/10.1002/we.1975, 2016. a, b
Download
Short summary
This publication presents methods to improve the awareness and control of material fatigue for wind turbines. This is achieved by enhancing a sophisticated control algorithm which utilizes wind prediction information from a laser measurement device. The simulation results indicate that the novel algorithm significantly improves the economic performance of a wind turbine. This benefit is particularly high for situations when the prediction quality is low or the prediction time frame is short.
Share
Altmetrics
Final-revised paper
Preprint