Articles | Volume 7, issue 5
Wind Energ. Sci., 7, 1905–1918, 2022
https://doi.org/10.5194/wes-7-1905-2022
Wind Energ. Sci., 7, 1905–1918, 2022
https://doi.org/10.5194/wes-7-1905-2022
Research article
16 Sep 2022
Research article | 16 Sep 2022

Statistical post-processing of reanalysis wind speeds at hub heights using a diagnostic wind model and neural networks

Sebastian Brune and Jan D. Keller

Related authors

Evaluation of wind speed estimates in reanalyses for wind energy applications
Sebastian Brune, Jan D. Keller, and Sabrina Wahl
Adv. Sci. Res., 18, 115–126, https://doi.org/10.5194/asr-18-115-2021,https://doi.org/10.5194/asr-18-115-2021, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Turbulence in a coastal environment: the case of Vindeby
Rieska Mawarni Putri, Etienne Cheynet, Charlotte Obhrai, and Jasna Bogunovic Jakobsen
Wind Energ. Sci., 7, 1693–1710, https://doi.org/10.5194/wes-7-1693-2022,https://doi.org/10.5194/wes-7-1693-2022, 2022
Short summary
Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions
Pradip Zamre and Thorsten Lutz
Wind Energ. Sci., 7, 1661–1677, https://doi.org/10.5194/wes-7-1661-2022,https://doi.org/10.5194/wes-7-1661-2022, 2022
Short summary
Spatiotemporal observations of nocturnal low-level jets and impacts on wind power production
Eduardo Weide Luiz and Stephanie Fiedler
Wind Energ. Sci., 7, 1575–1591, https://doi.org/10.5194/wes-7-1575-2022,https://doi.org/10.5194/wes-7-1575-2022, 2022
Short summary
Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573, https://doi.org/10.5194/wes-7-1551-2022,https://doi.org/10.5194/wes-7-1551-2022, 2022
Short summary
Brief communication: How does complex terrain change the power curve of a wind turbine?
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532, https://doi.org/10.5194/wes-7-1527-2022,https://doi.org/10.5194/wes-7-1527-2022, 2022
Short summary

Cited articles

Beyrich, F.: The Lindenberg reference site data set metadata information, National Center for Atmospheric Research, Boulder, Colorado, USA, http://srnwp.cosmo-model.org/archive/Lindenberg/support/metadata.pdf (last access: 22 November 2021), 2009. a
Bhumralkar, C. M., Mancuso, R. L., Ludwig, F. L., and Renné, D. S.: A practical and economic method for estimating wind characteristics at potential wind energy conversion sites, Sol. Energy, 25, 55–65, 1980. a
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soc., 141, 1–15, https://doi.org/10.1002/qj.2486, 2015. a, b
Brahimi, T.: Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia, Energies, 12, 4669, https://doi.org/10.3390/en12244669, 2019. a
Brümmer, B., Lange, I., and Konow, H.: Atmospheric boundary layer measurements at the 280 m high Hamburg weather mast 1995–2011: mean annual and diurnal cycles, Meteorol. Z., 21, 319–335, https://doi.org/10.1127/0941-2948/2012/0338, 2012. a
Download
Short summary
A post-processing of the wind speed of the regional reanalysis COSMO-REA6 in Central Europe is performed based on a combined physical and statistical approach. The physical basis is provided by downscaling wind speeds with the help of a diagnostic wind model, which reduces the horizontal grid point spacing by a factor of 8. The statistical correction using a neural network based on different variables of the reanalysis leads to an improvement of 30 % in RMSE compared to COSMO-REA6.