Articles | Volume 7, issue 5
https://doi.org/10.5194/wes-7-1905-2022
https://doi.org/10.5194/wes-7-1905-2022
Research article
 | 
16 Sep 2022
Research article |  | 16 Sep 2022

Statistical post-processing of reanalysis wind speeds at hub heights using a diagnostic wind model and neural networks

Sebastian Brune and Jan D. Keller

Related authors

Evaluation of wind speed estimates in reanalyses for wind energy applications
Sebastian Brune, Jan D. Keller, and Sabrina Wahl
Adv. Sci. Res., 18, 115–126, https://doi.org/10.5194/asr-18-115-2021,https://doi.org/10.5194/asr-18-115-2021, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024,https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024,https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary

Cited articles

Beyrich, F.: The Lindenberg reference site data set metadata information, National Center for Atmospheric Research, Boulder, Colorado, USA, http://srnwp.cosmo-model.org/archive/Lindenberg/support/metadata.pdf (last access: 22 November 2021), 2009. a
Bhumralkar, C. M., Mancuso, R. L., Ludwig, F. L., and Renné, D. S.: A practical and economic method for estimating wind characteristics at potential wind energy conversion sites, Sol. Energy, 25, 55–65, 1980. a
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soc., 141, 1–15, https://doi.org/10.1002/qj.2486, 2015. a, b
Brahimi, T.: Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia, Energies, 12, 4669, https://doi.org/10.3390/en12244669, 2019. a
Brümmer, B., Lange, I., and Konow, H.: Atmospheric boundary layer measurements at the 280 m high Hamburg weather mast 1995–2011: mean annual and diurnal cycles, Meteorol. Z., 21, 319–335, https://doi.org/10.1127/0941-2948/2012/0338, 2012. a
Download
Short summary
A post-processing of the wind speed of the regional reanalysis COSMO-REA6 in Central Europe is performed based on a combined physical and statistical approach. The physical basis is provided by downscaling wind speeds with the help of a diagnostic wind model, which reduces the horizontal grid point spacing by a factor of 8. The statistical correction using a neural network based on different variables of the reanalysis leads to an improvement of 30 % in RMSE compared to COSMO-REA6.
Altmetrics
Final-revised paper
Preprint