Articles | Volume 8, issue 4
https://doi.org/10.5194/wes-8-487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigations of correlation and coherence in turbulence from a large-eddy simulation
National Renewable Energy Laboratory, Golden, Colorado, USA
Eliot Quon
National Renewable Energy Laboratory, Golden, Colorado, USA
Matthew Churchfield
National Renewable Energy Laboratory, Golden, Colorado, USA
Paul Veers
National Renewable Energy Laboratory, Golden, Colorado, USA
Related authors
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci., 10, 1033–1053, https://doi.org/10.5194/wes-10-1033-2025, https://doi.org/10.5194/wes-10-1033-2025, 2025
Short summary
Short summary
We investigate asymmetries in terms of power performance and fatigue loading on a five-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintaining good power gains and show that a partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
Mehtab Ahmed Khan, Dries Allaerts, Simon J. Watson, and Matthew J. Churchfield
Wind Energ. Sci., 10, 1167–1185, https://doi.org/10.5194/wes-10-1167-2025, https://doi.org/10.5194/wes-10-1167-2025, 2025
Short summary
Short summary
To guide realistic atmospheric gravity wave simulations, we study flow over a two-dimensional hill and through a wind farm canopy, examining optimal domain size and damping layer setup. Wave properties based on non-dimensional numbers determine the optimal domain and damping parameters. Accurate solutions require the domain length to exceed the effective horizontal wavelength, height, and damping thickness to equal the vertical wavelength and non-dimensional damping strength between 1 and 10.
Andreas Knauer, Lutz Mütschard, Matt Churchfield, and Senu Sirnivas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-86, https://doi.org/10.5194/wes-2025-86, 2025
Manuscript not accepted for further review
Short summary
Short summary
Wake losses can reach up to 20 % of the power production in an offshore wind park. In simulations with the DTU 10-MW turbine the rotor is operated at slight off-design rotor speeds to manipulate wake turbulence development. An increased rotor speed establishes earlier high turbulence levels and increases turbulent mixing resulting in an increased power production. For a two-turbine array, the overall power production may increase up to 13 %.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci., 10, 1033–1053, https://doi.org/10.5194/wes-10-1033-2025, https://doi.org/10.5194/wes-10-1033-2025, 2025
Short summary
Short summary
We investigate asymmetries in terms of power performance and fatigue loading on a five-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintaining good power gains and show that a partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Branko Kosović, Sukanta Basu, Jacob Berg, Larry K. Berg, Sue E. Haupt, Xiaoli G. Larsén, Joachim Peinke, Richard J. A. M. Stevens, Paul Veers, and Simon Watson
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-42, https://doi.org/10.5194/wes-2025-42, 2025
Revised manuscript under review for WES
Short summary
Short summary
Most human activity happens in the layer of the atmosphere which extends a few hundred meters to a couple of kilometers above the surface of the Earth. The flow in this layer is turbulent. Turbulence impacts wind power production and turbine lifespan. Optimizing wind turbine performance requires understanding how turbulence affects both wind turbine efficiency and reliability. This paper points to gaps in our knowledge that need to be addressed to effectively utilize wind resources.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Shadan Mozafari, Jennifer Rinker, Paul Veers, and Katherine Dykes
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-68, https://doi.org/10.5194/wes-2024-68, 2024
Revised manuscript under review for WES
Short summary
Short summary
The study clarifies the use of probabilistic extrapolation of short/mid-term data for long-term site-specific fatigue assessments. In addition, it assesses the accountability of the Frandsen model in the Lillgrund wind farm as an example of compact layout.
Shadan Mozafari, Paul Veers, Jennifer Rinker, and Katherine Dykes
Wind Energ. Sci., 9, 799–820, https://doi.org/10.5194/wes-9-799-2024, https://doi.org/10.5194/wes-9-799-2024, 2024
Short summary
Short summary
Turbulence is one of the main drivers of fatigue in wind turbines. There is some debate on how to model the turbulence in normal wind conditions in the design phase. To address such debates, we study the fatigue load distribution and reliability following different models of the International Electrotechnical Commission 61400-1 standard. The results show the lesser importance of load uncertainty due to turbulence distribution compared to the uncertainty of material resistance and Miner’s rule.
Eliot Quon
Wind Energ. Sci., 9, 495–518, https://doi.org/10.5194/wes-9-495-2024, https://doi.org/10.5194/wes-9-495-2024, 2024
Short summary
Short summary
Engineering models used to design wind farms generally do not account for realistic atmospheric conditions that can rapidly evolve from minute to minute. This paper uses a first-principles simulation technique to predict the performance of five wind turbines during a wind farm control experiment. Challenges included limited observations and atypical conditions. The simulation accurately predicts the aerodynamics of a turbine when it is situated partially within the wake of an upstream turbine.
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023, https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
Short summary
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models. Lessons learned and discerned best practices are described in the context of the cases studied for the purpose of enabling further deployment of wind energy. It also points to code, assessment tools, and data for testing the methods.
Paul Veers, Carlo L. Bottasso, Lance Manuel, Jonathan Naughton, Lucy Pao, Joshua Paquette, Amy Robertson, Michael Robinson, Shreyas Ananthan, Thanasis Barlas, Alessandro Bianchini, Henrik Bredmose, Sergio González Horcas, Jonathan Keller, Helge Aagaard Madsen, James Manwell, Patrick Moriarty, Stephen Nolet, and Jennifer Rinker
Wind Energ. Sci., 8, 1071–1131, https://doi.org/10.5194/wes-8-1071-2023, https://doi.org/10.5194/wes-8-1071-2023, 2023
Short summary
Short summary
Critical unknowns in the design, manufacturing, and operation of future wind turbine and wind plant systems are articulated, and key research activities are recommended.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Cited articles
Allaerts, D., Quon, E., Draxl, C., and Churchfield, M.: Development of a
Time-Height Profile Assimilation Technique for Large-Eddy Simulation,
Bound.-Lay. Meteorol., 176, 329–348, 2020. a
Andersen, O. J. and Løvseth, J.: The Frøya database and maritime boundary layer wind description, Mar. Struct., 19, 173–192, 2006. a
Bardal, L. and Sætran, L.: Spatial correlation of atmospheric wind at
scales relevant for large scale wind turbines, J. Phys.: Conf. Ser., 753, 032033, https://doi.org/10.1088/1742-6596/753/3/032033, 2016. a
Berg, J., Natarajan, A., Mann, J., and Patton, E. G.: Gaussian vs non-Gaussian turbulence: impact on wind turbine loads, Wind Energy, 19, 1975–1989, 2016. a
Cheynet, E.: Influence of the measurement height on the vertical coherence of
natural wind, in: Conference of the Italian Association for Wind Engineering,
Springer, 207–221, https://doi.org/10.1007/978-3-030-12815-9_17, 2018. a, b
Cheynet, E., Jakobsen, J. B., Snæbjörnsson, J., Mikkelsen, T.,
Sjöholm, M., Mann, J., Hansen, P., Angelou, N., and Svardal, B.:
Application of short-range dual-Doppler lidars to evaluate the coherence of
turbulence, Exp. Fluids, 57, 1–17, 2016. a
Cheynet, E., Jakobsen, J. B., and Obhrai, C.: Spectral characteristics of
surface-layer turbulence in the North Sea, Energ. Proced., 137, 414–427,
2017a. a
Cheynet, E., Jakobsen, J. B., Snæbjörnsson, J., Mann, J., Courtney, M., Lea, G., and Svardal, B.: Measurements of surface-layer turbulence in a wide Norwegian fjord using synchronized long-range Doppler wind LiDARs, Remote Sens., 9, 977, https://doi.org/10.3390/rs9100977, 2017b. a
Cheynet, E., Jakobsen, J. B., and Reuder, J.: Velocity spectra and coherence
estimates in the marine atmospheric boundary layer, Bound.-Lay. Meteorol., 169, 429–460, 2018. a
Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical
study of the effects of atmospheric and wake turbulence on wind turbine
dynamics, J. Turbulence, 13, 1–32, https://doi.org/10.1080/14685248.2012.668191, 2012. a
Davenport, A. G.: The application of statistical concepts to the wind loading
of structures, Proc. Inst. Civ. Eng., 19, 449–472, 1961. a
Davenport, A. G.: The response of slender, line-like structures to a gusty
wind, Proc. Inst. Civ. Eng., 23, 389–408, 1962. a
Debnath, M., Brugger, P., Simley, E., Doubrawa, P., Hamilton, N., Scholbrock,
A., Jager, D., Murphy, M., Roadman, J., Lundquist, J. K., Fleming, P., Porté-Agel, F., and Moriarty, P.: Longitudinal coherence and short-term wind speed prediction based on a nacelle-mounted Doppler lidar, J. Phys.: Conf. Ser., 1618, 032051, https://doi.org/10.1088/1742-6596/1618/3/032051, 2020. a, b, c
Eidsvik, K. J.: Large-sample estimates of wind fluctuations over the ocean,
Bound.-Lay. Meteorol., 32, 103–132, 1985. a
Eliassen, L. and Obhrai, C.: Coherence of turbulent wind under neutral wind
conditions at FINO1, Energ. Proced., 94, 388–398, 2016. a
Eliassen, L., Jakobsen, J., and Krokstad, J.: The effect of turbulent wind
field on loads of a wind turbine rotor of increasing size, in: 14th International Conference on Wind Engineering, 21–26 June 2015, Porto Alegre, Brazil, 2015. a
Flay, R. and Stevenson, D.: Integral length scales in strong winds below 20 m, J. Wind Eng. Indust. Aerodynam., 28, 21–30, 1988. a
Holtslag, M., Bierbooms, W., and Van Bussel, G.: Wind turbine fatigue loads as a function of atmospheric conditions offshore, Wind Energy, 19, 1917–1932, 2016. a
Jonkman, J. M., Annoni, J., Hayman, G., Jonkman, B., and Purkayastha, A.:
Development of FAST.Farm: A new multi-physics engineering tool for wind-farm design and analysis, in: AIAA SciTech Forum: 35th Wind Energy Symposium, 9–13 January 2017, Grapevine, Texas, p. 0454, https://doi.org/10.2514/6.2017-0454, 2017. a
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral
characteristics of surface-layer turbulence, Q. J. Roy. Meteorol. Soc., 98, 563–589, 1972. a
Kelley, N.: Turbulence-turbine interaction: The basis for the development of
the TurbSim stochastic simulator, Technical Report TP-5000-52353, OSTI.GOV, 275–300, https://doi.org/10.2172/1031981, 2011. a
Kelley, N. D. and Jonkman, B. J.: Overview of the TurbSim stochastic inflow
turbulence simulator, NREL Technical report, NREL – National Renewable Energy Lab., Golden, CO, USA, https://doi.org/10.2172/15020329, 2005. a, b
Kelley, N. D., Jonkman, B. J., Scott, G., Bialasiewicz, J., and Redmond, L. S.: Impact of coherent turbulence on wind turbine aeroelastic response and its simulation, NREL Technical report CP-500-38074, NREL – National Renewable Energy Lab., Golden, CO, USA,
https://www.nrel.gov/docs/fy05osti/38074.pdf (last access: 3 April 2023), 2005. a
Kristensen, L. and Kirkegaard, P.: Sampling problems with spectral coherence,
in: vol. 526, Risø National Laboratory, Roskilde, Denmark, ISBN 87-550-1193-4
https://orbit.dtu.dk/en/publications/sampling-problems-with-spectral-coherence (last access: 3 April 2023), 1986. a
Mann, J., Kristensen, L., and Courtney, M.: The Great Belt coherence
experiment, ISBN 87-550-1747-9,
https://orbit.dtu.dk/en/publications/the-great-belt-coherence-experiment-a-study-of-atmospheric (last access: 3 April 2023), 1991. a
Martin, C. M. S., Lundquist, J. K., and Handschy, M. A.: Variability of
interconnected wind plants: correlation length and its dependence on
variability time scale, Environ. Res. Lett., 10, 044004, https://doi.org/10.1088/1748-9326/10/4/044004, 2015. a
NREL: SOWFA-6, GitHub [code], https://github.com/NREL/SOWFA-6, last access: 3 April 2023. a
Pope, S. B.: Turbulent flows, Cambridge University Press,
https://doi.org/10.1017/CBO9780511840531, 2001. a
Quon, E., Thedin, R., and Allaerts, D.: a2e-mmc/SOWFA-setups: End of A2e MMC Project (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7764348, 2023. a
Robertson, A., Sethuraman, L., Jonkman, J. M., and Quick, J.: Assessment of
Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads, in:
2018 Wind Energy Symposium at the AIAA SciTech Forum, 8–12 January 2018, Kissimmee, Florida, https://doi.org/10.2514/6.2018-1728, 2018. a
Sacré, C. and Delaunay, D.: Structure spatiale de la turbulence au cours de vents forts sur differents sites, J. Wind Eng. Indust. Aerodynam., 41, 295–303, 1992. a
Sathe, A. and Bierbooms, W.: Influence of different wind profiles due to
varying atmospheric stability on the fatigue life of wind turbines, J. Phys.: Conf. Ser., 75, 012056, https://doi.org/10.1088/1742-6596/75/1/012056, 2007. a
Sathe, A., Mann, J., Barlas, T., Bierbooms, W., and Van Bussel, G.: Influence
of atmospheric stability on wind turbine loads, Wind Energy, 16, 1013–1032,
2013. a
Schlipf, D., Haizmann, F., Cosack, N., Siebers, T., and Cheng, P. W.: Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control, Meteorol. Z., 24, 565–579,
https://doi.org/10.1127/metz/2015/0634, 2015. a
Shaler, K., Jonkman, J., Doubrawa Moreira, P., and Hamilton, N.: FAST.Farm
response to varying wind inflow techniques, in: AIAA Scitech 2019 Forum,
7–11 January 2019, San Diego, California, https://doi.org/10.2514/6.2019-2086, 2019. a, b, c
Simiu, E. and Scanlan, R. H.: Wind effects on structures: fundamentals and
applications to design, in: vol. 688, John Wiley, New York, ISBN 100471121576
ISBN 13978-0471121572, 1996. a
Simley, E., Angelou, N., Mikkelsen, T., Sjöholm, M., Mann, J., and Pao,
L. Y.: Characterization of wind velocities in the upstream induction zone of
a wind turbine using scanning continuous-wave lidars, J. Renew. Sustain. Energ., 8, 013301, https://doi.org/10.1063/1.4940025, 2016. a
Taylor, G. I.: The spectrum of turbulence, P. Roy. Soc. Lond. A, 164, 476–490, 1938. a
Thresher, R., Holley, W., Smith, C., Jafarey, N., and Lin, S.: Modeling the
response of wind turbines to atmospheric turbulence, Tech. rep., Department of Mechanical Engineering, Oregon State University, Corvallis, USA, https://www.researchgate.net/publication/236428858_Modeling_the_response_of_wind_turbines_to_atmospheric_turbulence (last access: 3 April 2023), 1981. a
Tian, W., Ozbay, A., and Hu, H.: An experimental investigation on the
aeromechanics and wake interferences of wind turbines sited over complex
terrain, J. Wind Eng. Indust. Aerodynam., 172, 379–394, 2018. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O.,
Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
von Kármän, T.: Progress in the statistical theory of turbulence, P. Natl. Acad. Sci. USA, 34, 530–539, https://doi.org/10.1073/pnas.34.11.530, 1948. a, b
Wise, A. and Bachynski, E. E.: Analysis of wake effects on global responses for a floating two-turbine case, J. Phys.: Conf. Ser., 1356, 012004, https://doi.org/10.1088/1742-6596/1356/1/012004, 2019. a
Short summary
We investigate coherence and correlation and highlight their importance for disciplines like wind energy structural dynamic analysis, in which blade loading and fatigue depend on turbulence structure. We compare coherence estimates to those computed using a model suggested by international standards. We show the differences and highlight additional information that can be gained using large-eddy simulation, further improving analytical coherence models used in synthetic turbulence generators.
We investigate coherence and correlation and highlight their importance for disciplines like...
Altmetrics
Final-revised paper
Preprint