Articles | Volume 8, issue 1
https://doi.org/10.5194/wes-8-85-2023
https://doi.org/10.5194/wes-8-85-2023
Research article
 | 
13 Jan 2023
Research article |  | 13 Jan 2023

Effect of different source terms and inflow direction in atmospheric boundary modeling over the complex terrain site of Perdigão

Kartik Venkatraman, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Teigen Giljarhus

Related authors

Comparison Metrics Microscale Simulation Challenge for Wind Resource Assessment
Florian Hammer, Sarah Barber, Sebastian Remmler, Federico Bernardoni, Kartik Venkatraman, Gustavo A. Díez Sánchez, Alain Schubiger, Trond-Ola Hågbo, Sophia Buckingham, and Knut Erik Giljarhus
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-114,https://doi.org/10.5194/wes-2022-114, 2023
Preprint withdrawn
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction
Rémi Gandoin and Jorge Garza
Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024,https://doi.org/10.5194/wes-9-1727-2024, 2024
Short summary
Brief communication: A simple axial induction modification to the Weather Research and Forecasting Fitch wind farm parameterization
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024,https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Impact of swell waves on atmospheric surface turbulence: wave–turbulence decomposition methods
Mostafa Bakhoday Paskyabi
Wind Energ. Sci., 9, 1631–1645, https://doi.org/10.5194/wes-9-1631-2024,https://doi.org/10.5194/wes-9-1631-2024, 2024
Short summary
Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024,https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024,https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary

Cited articles

Alletto, M., Radi, A., Adib, J., Langner, J., Peralta, C., Altmikus, A., and Letzel, M.: E-Wind: Steady state CFD approach for stratified flows used for site assessment at Enercon, J. Phys.-Conf. Ser., 1037, 072020, https://doi.org/10.1088/1742-6596/1037/7/072020, 2018. a, b
Bechmann, A., Berg, J., Courtney, M., Jørgensen, H., Mann, J., and Sørensen, N.: The Bolund Experiment: Blind Comparison of Models for Wind in Complex Terrain (Invited), American Geophysical Union (AGU) Fall Meeting Abstracts, https://ui.adsabs.harvard.edu/abs/2009AGUFM.A33H..08B/abstract (last access: 10 January 2023), 2009. a
Blocken, B.: 50 years of Computational Wind Engineering: Past, present and future, J. Wind Eng. Ind. Aerod., 129, 69–102, https://doi.org/10.1016/j.jweia.2014.03.008, 2014. a
Brower, M.: Findings of investigations into under-performing sites, in: Proceedings of EWEA Technology Workshop, Lyon, France, European Wind Energy Association (EWEA), http://www.ewea.org/events/workshops/past-workshops/analysis-of-operating-wind-farms/programme-proceedings/ (last access: 10 January 2023), 2012. a
Carvalho, J. P. D. B.: Analysis of stationary periods during the Perdigão 2017 campaign, Master's thesis, University of Porto, Portugal, https://repositorio-aberto.up.pt/bitstream/10216/122036/2/348346.pdf (last access: 10 January 2023), 2019. a
Download
Short summary
This paper is focused on the impact of modeling different effects, such as forest canopy and Coriolis forces, on the wind resource over a complex terrain site located near Perdigão, Portugal. A numerical model is set up and results are compared with field measurements. The results show that including a forest canopy improves the predictions close to the ground at some locations on the site, while the model with inflow from a precursor performed better at other locations.
Altmetrics
Final-revised paper
Preprint