Articles | Volume 9, issue 7
https://doi.org/10.5194/wes-9-1483-2024
https://doi.org/10.5194/wes-9-1483-2024
Research article
 | 
09 Jul 2024
Research article |  | 09 Jul 2024

Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines

Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn

Related authors

Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022,https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Modelling the Wind Turbine Inflow with a Reduced Order Model based on SpinnerLidar Measurements
Anantha Padmanabhan Kidambi Sekar, Marijn Floris van Dooren, Andreas Rott, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-16,https://doi.org/10.5194/wes-2021-16, 2021
Preprint withdrawn
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wakes and wind farm aerodynamics
Experimental demonstration of regenerative wind farming using a high-density layout of vertical-axis wind turbines
David Bensason, Jayant Mulay, Andrea Sciacchitano, and Carlos Ferreira
Wind Energ. Sci., 10, 1499–1528, https://doi.org/10.5194/wes-10-1499-2025,https://doi.org/10.5194/wes-10-1499-2025, 2025
Short summary
Modeling the effects of active wake mixing on wake behavior through large-scale coherent structures
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, Marc T. Henry de Frahan, Marc Day, and Michael Sprague
Wind Energ. Sci., 10, 1403–1420, https://doi.org/10.5194/wes-10-1403-2025,https://doi.org/10.5194/wes-10-1403-2025, 2025
Short summary
Wake development in floating wind turbines: new insights and an open dataset from wind tunnel experiments
Alessandro Fontanella, Alberto Fusetti, Stefano Cioni, Francesco Papi, Sara Muggiasca, Giacomo Persico, Vincenzo Dossena, Alessandro Bianchini, and Marco Belloli
Wind Energ. Sci., 10, 1369–1387, https://doi.org/10.5194/wes-10-1369-2025,https://doi.org/10.5194/wes-10-1369-2025, 2025
Short summary
Spatiotemporal behavior of the far wake of a wind turbine model subjected to harmonic motions: phase averaging applied to stereo particle image velocimetry measurements
Antonin Hubert, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 10, 1351–1368, https://doi.org/10.5194/wes-10-1351-2025,https://doi.org/10.5194/wes-10-1351-2025, 2025
Short summary
Spatial development of planar and axisymmetric wakes of porous objects under a pressure gradient: a wind tunnel study
Wessel van der Deijl, Martín Obligado, Stéphane Barre, and Christophe Sicot
Wind Energ. Sci., 10, 719–732, https://doi.org/10.5194/wes-10-719-2025,https://doi.org/10.5194/wes-10-719-2025, 2025
Short summary

Cited articles

Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes, Energies, 11, 1838, https://doi.org/10.3390/EN11071838, 2018. a
Angelou, N., Mann, J., Sjöholm, M., and Courtney, M.: Direct measurement of the spectral transfer function of a laser based anemometer, Rev. Sci. Instrum., 83, 033111, https://doi.org/10.1063/1.3697728, 2012. a, b
Angelou, N., Mann, J., and Dellwik, E.: Scanning Doppler lidar measurements of drag force on a solitary tree, J. Fluid Mech., 917, A30, https://doi.org/10.1017/jfm.2021.275, 2021. a
Asimakopoulos, M., Clive, P., More, G., and Boddington, R.: Offshore compression zone measurement and visualization, in: European Wind Energy Association 2014 Annual Event, Barcelona, Spain, 2014. a
Barthelmie, R. J.: The effects of atmospheric stability on coastal wind climates, Meteorol. Appl., 6, 39–47, https://doi.org/10.1017/S1350482799000961, 1999. a
Download
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Share
Altmetrics
Final-revised paper
Preprint