Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1791-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1791-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Sandia National Laboratories, Albuquerque, NM, USA
Pietro Bortolotti
National Renewable Energy Laboratory, Golden, CO, USA
Emmanuel Branlard
Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
Mayank Chetan
National Renewable Energy Laboratory, Golden, CO, USA
Scott Dana
National Renewable Energy Laboratory, Golden, CO, USA
Nathaniel deVelder
Sandia National Laboratories, Albuquerque, NM, USA
Paula Doubrawa
National Renewable Energy Laboratory, Golden, CO, USA
Nicholas Hamilton
National Renewable Energy Laboratory, Golden, CO, USA
Hristo Ivanov
National Renewable Energy Laboratory, Golden, CO, USA
Jason Jonkman
National Renewable Energy Laboratory, Golden, CO, USA
Christopher Kelley
Sandia National Laboratories, Albuquerque, NM, USA
Daniel Zalkind
National Renewable Energy Laboratory, Golden, CO, USA
Related authors
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, Marc T. Henry de Frahan, Marc Day, and Michael Sprague
Wind Energ. Sci., 10, 1403–1420, https://doi.org/10.5194/wes-10-1403-2025, https://doi.org/10.5194/wes-10-1403-2025, 2025
Short summary
Short summary
Mitigating turbine wakes is an important aspect to maximizing wind farm energy production but is a challenge to model. We demonstrate a new approach to modeling active wake mixing, which re-energizes turbine wake through periodic blade pitching. The new model divides the wake into separate steady, unsteady, and turbulent components and solves for each in a computationally efficient manner. Our results show that the model can reasonably predict the faster wake recovery due to mixing.
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025, https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Short summary
In this paper, we present results from advanced computer simulations to determine the effects of applying different control strategies to a small wind farm. We show that when there is variability in wind direction over height, steering the wake of a turbine away from other turbines is the most effective strategy. When this variability is not present, actively changing the pitch angle of the blades to increase turbulence in the wake could be more effective.
Gopal R. Yalla, Kenneth Brown, Lawrence Cheung, Dan Houck, Nathaniel deVelder, and Nicholas Hamilton
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-14, https://doi.org/10.5194/wes-2025-14, 2025
Revised manuscript accepted for WES
Short summary
Short summary
When wind reaches the first set of turbines in a wind farm, energy is extracted, reducing the energy available for downstream turbines. This study examines emerging technologies aimed at re-energizing the wind between turbines in a wind farm to improve overall power production. Optimizing these technologies depends on understanding complex features of the atmosphere and the wakes behind turbines, which is accomplished using high fidelity computer simulations and data analysis techniques.
Kenneth Brown, Gopal Yalla, Lawrence Cheung, Joeri Frederik, Dan Houck, Nate deVelder, Eric Simley, and Paul Fleming
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-191, https://doi.org/10.5194/wes-2024-191, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This paper presents a one half of a companion-paper series that studies strategies to reduce negative aerodynamic interference (i.e., wake effects) between nearby wind turbines in a wind farm. The approach leverages high-fidelity flow simulations of an open-source design for an offshore wind turbine. Complimenting the companion paper’s analysis of the power and loading effects of the wake-control strategies, this article uncovers the underlying fluid-dynamic causes for these effects.
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024, https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth N. Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, William Radünz, and Patrick Moriarty
Wind Energ. Sci., 10, 1681–1705, https://doi.org/10.5194/wes-10-1681-2025, https://doi.org/10.5194/wes-10-1681-2025, 2025
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Nicholas Hamilton and Shreyas Bidadi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-137, https://doi.org/10.5194/wes-2025-137, 2025
Preprint under review for WES
Short summary
Short summary
This study explores improvements to an atmospheric measurement method called acoustic tomography, which uses sound travel times to estimate wind and temperature. We compare several ways of estimating how air conditions vary and show that models based on realistic wind turbine simulations yield more accurate results than traditional simplified methods. These findings support better observations of complex air flows around wind turbines, helping advance renewable energy research.
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, Marc T. Henry de Frahan, Marc Day, and Michael Sprague
Wind Energ. Sci., 10, 1403–1420, https://doi.org/10.5194/wes-10-1403-2025, https://doi.org/10.5194/wes-10-1403-2025, 2025
Short summary
Short summary
Mitigating turbine wakes is an important aspect to maximizing wind farm energy production but is a challenge to model. We demonstrate a new approach to modeling active wake mixing, which re-energizes turbine wake through periodic blade pitching. The new model divides the wake into separate steady, unsteady, and turbulent components and solves for each in a computationally efficient manner. Our results show that the model can reasonably predict the faster wake recovery due to mixing.
Cory Frontin, Jeff Allen, Christopher J. Bay, Jared Thomas, Ethan Young, and Pietro Bortolotti
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-103, https://doi.org/10.5194/wes-2025-103, 2025
Preprint under review for WES
Short summary
Short summary
Wind farms produce energy and to do so have to occupy a non-trivial amount of space. Understanding how much energy a proposed wind farm will make (and at what cost) is technically challenging, especially when turbines are packed closely together. Plus, there's a key tradeoff in how much space a farm occupies and how cheap the energy it can produce might be: less space means more costly energy. This work shows an novel way to run computational simulations efficiently to understand that tradeoff.
Veronica Liverud Krathe, Jason Jonkman, and Erin Elizabeth Bachynski-Polić
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-92, https://doi.org/10.5194/wes-2025-92, 2025
Preprint under review for WES
Short summary
Short summary
This study looks into how changes in wind direction with height and drivetrain flexibility influence the behavior of large floating wind turbines. Using numerical simulations, it was found that these factors can significantly impact the lifetime of the turbines. These results suggest that standardized design methods may underestimate fatigue and that improved modeling could enhance turbine reliability as turbines continue to grow in size.
Regis Thedin, Garrett Barter, Jason Jonkman, Rafael Mudafort, Christopher J. Bay, Kelsey Shaler, and Jasper Kreeft
Wind Energ. Sci., 10, 1033–1053, https://doi.org/10.5194/wes-10-1033-2025, https://doi.org/10.5194/wes-10-1033-2025, 2025
Short summary
Short summary
We investigate asymmetries in terms of power performance and fatigue loading on a five-turbine wind farm subject to wake steering strategies. Both the yaw misalignment angle and the wind direction were varied from negative to positive. We highlight conditions in which fatigue loading is lower while still maintaining good power gains and show that a partial wake is the source of the asymmetries observed. We provide recommendations in terms of yaw misalignment angles for a given wind direction.
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 10, 941–970, https://doi.org/10.5194/wes-10-941-2025, https://doi.org/10.5194/wes-10-941-2025, 2025
Short summary
Short summary
Numerical models, used to assess loads on floating offshore wind turbines, require many input parameters to describe air and water conditions, system properties, and load calculations. All parameters have some possible range, due to uncertainty and/or variations with time. The selected values can have important effects on the uncertainty in the resulting loads. This work identifies the input parameters that have the most impact on ultimate and fatigue loads for extreme storm load cases.
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025, https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Short summary
In this paper, we present results from advanced computer simulations to determine the effects of applying different control strategies to a small wind farm. We show that when there is variability in wind direction over height, steering the wake of a turbine away from other turbines is the most effective strategy. When this variability is not present, actively changing the pitch angle of the blades to increase turbulence in the wake could be more effective.
Pietro Bortolotti, Lee Jay Fingersh, Nicholas Hamilton, Arlinda Huskey, Chris Ivanov, Mark Iverson, Jonathan Keller, Scott Lambert, Jason Roadman, Derek Slaughter, Syhoune Thao, and Consuelo Wells
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-8, https://doi.org/10.5194/wes-2025-8, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study compares a wind turbine with blades behind the tower (downwind) to the traditional upwind design. Testing a 1.5 MW turbine at NREL’s Flatirons Campus, we measured performance, loads, and noise. Numerical models matched well with observations. The downwind setup showed higher fatigue loads and sound variations but also an unexpected power improvement. Downwind rotors might be a valid alternative for future floating offshore wind applications.
Gopal R. Yalla, Kenneth Brown, Lawrence Cheung, Dan Houck, Nathaniel deVelder, and Nicholas Hamilton
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-14, https://doi.org/10.5194/wes-2025-14, 2025
Revised manuscript accepted for WES
Short summary
Short summary
When wind reaches the first set of turbines in a wind farm, energy is extracted, reducing the energy available for downstream turbines. This study examines emerging technologies aimed at re-energizing the wind between turbines in a wind farm to improve overall power production. Optimizing these technologies depends on understanding complex features of the atmosphere and the wakes behind turbines, which is accomplished using high fidelity computer simulations and data analysis techniques.
Kenneth Brown, Gopal Yalla, Lawrence Cheung, Joeri Frederik, Dan Houck, Nate deVelder, Eric Simley, and Paul Fleming
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-191, https://doi.org/10.5194/wes-2024-191, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This paper presents a one half of a companion-paper series that studies strategies to reduce negative aerodynamic interference (i.e., wake effects) between nearby wind turbines in a wind farm. The approach leverages high-fidelity flow simulations of an open-source design for an offshore wind turbine. Complimenting the companion paper’s analysis of the power and loading effects of the wake-control strategies, this article uncovers the underlying fluid-dynamic causes for these effects.
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025, https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
Katarzyna Patryniak, Maurizio Collu, Jason Jonkman, Matthew Hall, Garrett Barter, Daniel Zalkind, and Andrea Coraddu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-167, https://doi.org/10.5194/wes-2024-167, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This paper studies the Instantaneous Centre of Rotation (ICR) of Floating Offshore Wind Turbines (FOWTs). We present a method for computing the ICR and examine the correlations between the external loading, design features, ICR statistics, motions, and loads. We demonstrate how to apply the new insights to successfully modify the designs of the spar and semisubmersible FOWTs to reduce the loads in the moorings, the tower, and the blades, improving the ultimate strength and fatigue properties.
William Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-166, https://doi.org/10.5194/wes-2024-166, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study investigates how simple terrain can cause significant variations in wind speed, especially during specific atmospheric conditions like low-level jets. By combining simulations and observations from a real wind farm, we found that downstream turbines generate more power than upstream ones, despite wake effects only impacting the upstream turbines. We highlight the crucial role of the strong vertical wind speed gradient in low-level jets in driving this effect.
Lucas Carmo, Jason Jonkman, and Regis Thedin
Wind Energ. Sci., 9, 1827–1847, https://doi.org/10.5194/wes-9-1827-2024, https://doi.org/10.5194/wes-9-1827-2024, 2024
Short summary
Short summary
As floating wind turbines progress to arrays with multiple units, it becomes important to understand how the wake of a floating turbine affects the performance of other units in the array. Due to the compliance of the floating substructure, the wake of a floating wind turbine may behave differently from that of a fixed turbine. In this work, we present an investigation of the mutual interaction between the motions of floating wind turbines and wakes.
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024, https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Kelsey Shaler, Eliot Quon, Hristo Ivanov, and Jason Jonkman
Wind Energ. Sci., 9, 1451–1463, https://doi.org/10.5194/wes-9-1451-2024, https://doi.org/10.5194/wes-9-1451-2024, 2024
Short summary
Short summary
This paper presents a three-way verification and validation between an engineering-fidelity model, a high-fidelity model, and measured data for the wind farm structural response and wake dynamics during an evolving stable boundary layer of a small wind farm, generally with good agreement.
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024, https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Short summary
Experiments offer incredible value to science, but results must come with an uncertainty quantification to be meaningful. We present a method to simulate a proposed experiment, calculate uncertainties, and determine the measurement duration (total time of measurements) and the experiment duration (total time to collect the required measurement data when including condition variability and time when measurement is not occurring) required to produce statistically significant and converged results.
Francesco Papi, Jason Jonkman, Amy Robertson, and Alessandro Bianchini
Wind Energ. Sci., 9, 1069–1088, https://doi.org/10.5194/wes-9-1069-2024, https://doi.org/10.5194/wes-9-1069-2024, 2024
Short summary
Short summary
Blade element momentum (BEM) theory is the backbone of many industry-standard aerodynamic models. However, the analysis of floating offshore wind turbines (FOWTs) introduces new challenges, which could put BEM models to the test. This study systematically compares four aerodynamic models, ranging from BEM to computational fluid dynamics, in an attempt to shed light on the unsteady aerodynamic phenomena that are at stake in FOWTs and whether BEM is able to model them appropriately.
Roger Bergua, Will Wiley, Amy Robertson, Jason Jonkman, Cédric Brun, Jean-Philippe Pineau, Quan Qian, Wen Maoshi, Alec Beardsell, Joshua Cutler, Fabio Pierella, Christian Anker Hansen, Wei Shi, Jie Fu, Lehan Hu, Prokopios Vlachogiannis, Christophe Peyrard, Christopher Simon Wright, Dallán Friel, Øyvind Waage Hanssen-Bauer, Carlos Renan dos Santos, Eelco Frickel, Hafizul Islam, Arjen Koop, Zhiqiang Hu, Jihuai Yang, Tristan Quideau, Violette Harnois, Kelsey Shaler, Stefan Netzband, Daniel Alarcón, Pau Trubat, Aengus Connolly, Seán B. Leen, and Oisín Conway
Wind Energ. Sci., 9, 1025–1051, https://doi.org/10.5194/wes-9-1025-2024, https://doi.org/10.5194/wes-9-1025-2024, 2024
Short summary
Short summary
This paper provides a comparison for a floating offshore wind turbine between the motion and loading estimated by numerical models and measurements. The floating support structure is a novel design that includes a counterweight to provide floating stability to the system. The comparison between numerical models and the measurements includes system motion, tower loads, mooring line loads, and loading within the floating support structure.
Emmanuel Branlard, Jason Jonkman, Cameron Brown, and Jiatian Zhang
Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, https://doi.org/10.5194/wes-9-1-2024, 2024
Short summary
Short summary
In this work, we implement, verify, and validate a physics-based digital twin solution applied to a floating offshore wind turbine. The article present methods to obtain reduced-order models of floating wind turbines. The models are used to form a digital twin which combines measurements from the TetraSpar prototype (a full-scale floating offshore wind turbine) to estimate signals that are not typically measured.
Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
Short summary
Short summary
Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
Will Wiley, Jason Jonkman, Amy Robertson, and Kelsey Shaler
Wind Energ. Sci., 8, 1575–1595, https://doi.org/10.5194/wes-8-1575-2023, https://doi.org/10.5194/wes-8-1575-2023, 2023
Short summary
Short summary
A sensitivity analysis determined the modeling parameters for an operating floating offshore wind turbine with the biggest impact on the ultimate and fatigue loads. The loads were the most sensitive to the standard deviation of the wind speed. Ultimate and fatigue mooring loads were highly sensitive to the current speed; only the fatigue mooring loads were sensitive to wave parameters. The largest platform rotation was the most sensitive to the platform horizontal center of gravity.
Paula Doubrawa, Kelsey Shaler, and Jason Jonkman
Wind Energ. Sci., 8, 1475–1493, https://doi.org/10.5194/wes-8-1475-2023, https://doi.org/10.5194/wes-8-1475-2023, 2023
Short summary
Short summary
Wind turbines are designed to withstand any wind conditions they might encounter. This includes high-turbulence flow fields found within wind farms due to the presence of the wind turbines themselves. The international standard allows for two ways to account for wind farm turbulence in the design process. We compared both ways and found large differences between them. To avoid overdesign and enable a site-specific design, we suggest moving towards validated, higher-fidelity simulation tools.
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112, https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents an approach to analytically estimate the wake deficit within the near-wake region by modifying the curled wake model. This is done by incorporating a new initial condition at the rotor using an azimuth-dependent Gaussian profile, an adjusted turbulence model in the near-wake region and the far-wake region and an iterative process to determine the velocity field, while considering the relation of the pressure gradient and accounting the conservation of mass.
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
Short summary
Short summary
This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
Mac Gaunaa, Niels Troldborg, and Emmanuel Branlard
Wind Energ. Sci., 8, 503–513, https://doi.org/10.5194/wes-8-503-2023, https://doi.org/10.5194/wes-8-503-2023, 2023
Short summary
Short summary
We present an analytical vortex model. Despite its simplicity, the model is fully consistent with 1D momentum theory. It shows that the flow through a non-uniformly loaded rotor operating in non-uniform inflow behaves locally as predicted by 1D momentum theory. As a consequence, the local power coefficient (based on local inflow) of an ideal rotor is unaltered by the presence of shear. Finally, the model shows that there is no cross-shear deflection of the wake of a rotor in sheared inflow.
Ryan Scott, Luis Martínez-Tossas, Juliaan Bossuyt, Nicholas Hamilton, and Raúl B. Cal
Wind Energ. Sci., 8, 449–463, https://doi.org/10.5194/wes-8-449-2023, https://doi.org/10.5194/wes-8-449-2023, 2023
Short summary
Short summary
In this work we examine the relationship between wind speed and turbulent stresses within a wind turbine wake. This relationship changes further from the turbine as the driving physical phenomena vary throughout the wake. We propose a model for this process and test the effectiveness of our model against existing formulations. Our approach increases the accuracy of wind speed predictions, which will lead to better estimates of wind plant performance and promote more efficient wind plant design.
Kelsey Shaler, Benjamin Anderson, Luis A. Martínez-Tossas, Emmanuel Branlard, and Nick Johnson
Wind Energ. Sci., 8, 383–399, https://doi.org/10.5194/wes-8-383-2023, https://doi.org/10.5194/wes-8-383-2023, 2023
Short summary
Short summary
Free-vortex wake (OLAF) and low-fidelity blade-element momentum (BEM) structural results are compared to high-fidelity simulation results for a flexible downwind turbine for varying inflow conditions. Overall, OLAF results were more consistent than BEM results when compared to SOWFA results under challenging inflow conditions. Differences between OLAF and BEM results were dominated by yaw misalignment angle, with varying shear exponent and turbulence intensity causing more subtle differences.
Koen Boorsma, Gerard Schepers, Helge Aagard Madsen, Georg Pirrung, Niels Sørensen, Galih Bangga, Manfred Imiela, Christian Grinderslev, Alexander Meyer Forsting, Wen Zhong Shen, Alessandro Croce, Stefano Cacciola, Alois Peter Schaffarczyk, Brandon Lobo, Frederic Blondel, Philippe Gilbert, Ronan Boisard, Leo Höning, Luca Greco, Claudio Testa, Emmanuel Branlard, Jason Jonkman, and Ganesh Vijayakumar
Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, https://doi.org/10.5194/wes-8-211-2023, 2023
Short summary
Short summary
Within the framework of the fourth phase of the International Energy Agency's (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out. Results were obtained from more than 19 simulation tools of various fidelity, originating from 12 institutes and compared to state-of-the-art field measurements. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling.
Kelsey Shaler, Amy N. Robertson, and Jason Jonkman
Wind Energ. Sci., 8, 25–40, https://doi.org/10.5194/wes-8-25-2023, https://doi.org/10.5194/wes-8-25-2023, 2023
Short summary
Short summary
This work evaluates which wind-inflow- and wake-related parameters have the greatest influence on fatigue and ultimate loads for turbines in a small wind farm. Twenty-eight parameters were screened using an elementary effects approach to identify the parameters that lead to the largest variation in these loads of each turbine. The findings show the increased importance of non-streamwise wind components and wake parameters in fatigue and ultimate load sensitivity of downstream turbines.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Emmanuel Branlard and Jens Geisler
Wind Energ. Sci., 7, 2351–2371, https://doi.org/10.5194/wes-7-2351-2022, https://doi.org/10.5194/wes-7-2351-2022, 2022
Short summary
Short summary
The article presents a framework to obtain the linear and nonlinear equations of motion of a multibody system including rigid and flexible bodies. The method yields compact symbolic equations of motion. The applications are many, such as time-domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, and digital twins.
Mayank Chetan, Shulong Yao, and D. Todd Griffith
Wind Energ. Sci., 7, 1731–1751, https://doi.org/10.5194/wes-7-1731-2022, https://doi.org/10.5194/wes-7-1731-2022, 2022
Short summary
Short summary
Though large wind turbines are appealing to reduce costs, larger blades are prone to aero-elastic instabilities due to their long, slender, highly flexible nature. New rotor concepts are emerging including two-bladed rotors and downwind configurations. We introduce a comprehensive evaluation of flutter behavior including classical flutter and edgewise vibration for large-scale two-bladed rotors. The study aims to provide designers with insights to mitigate flutter in future designs.
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022, https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Short summary
Using highly accurate simulations within a design cycle is prohibitively computationally expensive. We implement and present a multifidelity optimization method and showcase its efficacy using three different case studies. We examine aerodynamic blade design, turbine controls tuning, and a wind plant layout problem. In each case, the multifidelity method finds an optimal design that performs better than those obtained using simplified models but at a lower cost than high-fidelity optimization.
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary
Short summary
This paper summarizes efforts done to understand the impact of design parameter variations in the physical system (e.g., mass, stiffness, geometry, aerodynamic, and hydrodynamic coefficients) on the linearized system using OpenFAST in support of the development of the WEIS toolset to enable controls co-design of floating offshore wind turbines.
Emmanuel Branlard, Ian Brownstein, Benjamin Strom, Jason Jonkman, Scott Dana, and Edward Ian Baring-Gould
Wind Energ. Sci., 7, 455–467, https://doi.org/10.5194/wes-7-455-2022, https://doi.org/10.5194/wes-7-455-2022, 2022
Short summary
Short summary
In this work, we present an aerodynamic tool that can model an arbitrary collections of wings, blades, rotors, and towers. With these functionalities, the tool can be used to study and design advanced wind energy concepts, such as horizontal-axis wind turbines, vertical-axis wind turbines, kites, or multi-rotors. This article describes the key features of the tool and presents multiple applications. Field measurements of horizontal- and vertical-axis wind turbines are used for comparison.
Nikhar J. Abbas, Daniel S. Zalkind, Lucy Pao, and Alan Wright
Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, https://doi.org/10.5194/wes-7-53-2022, 2022
Short summary
Short summary
The publication of the Reference Open-Source Controller (ROSCO) provides a controller and generic controller tuning process to the wind energy research community that can perform comparably or better than existing reference wind turbine controllers and includes features that are consistent with industry standards. Notably, ROSCO provides the first known open-source controller with features that specifically address floating offshore wind turbine control.
Ernesto Camarena, Evan Anderson, Josh Paquette, Pietro Bortolotti, Roland Feil, and Nick Johnson
Wind Energ. Sci., 7, 19–35, https://doi.org/10.5194/wes-7-19-2022, https://doi.org/10.5194/wes-7-19-2022, 2022
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway to further increasing the size of land-based wind turbines.
Dan Houck, David Maniaci, and Chris L. Kelley
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-122, https://doi.org/10.5194/wes-2021-122, 2021
Preprint withdrawn
Short summary
Short summary
Like young children without help, wind turbines are bad at sharing. Those that are first in line (most upstream) take all the fresh air leaving little for those downstream. This research shows how turbines can operate to share the wind resource better and what parameters are most important for optimizing this technique. Results indicate that power gains of 10 % can be achieved if upstream turbines are operated differently, which may help operators produce more wind power.
Pietro Bortolotti, Nick Johnson, Nikhar J. Abbas, Evan Anderson, Ernesto Camarena, and Joshua Paquette
Wind Energ. Sci., 6, 1277–1290, https://doi.org/10.5194/wes-6-1277-2021, https://doi.org/10.5194/wes-6-1277-2021, 2021
Short summary
Short summary
The length of rotor blades of land-based wind turbines is currently constrained by logistics. Turbine manufacturers currently propose segmented solutions to overcome these limits, but blade joints come with extra masses and costs. This work investigates an alternative solution, namely the design of ultra-flexible blades that can be transported on rail via controlled bending. The results show that this is a promising pathway for further increasing the size of land-based wind turbines.
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021, https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Short summary
We perform a validation of the new simulation tool FAST.Farm for the prediction of power output and structural loads in single wake conditions with respect to measurement data from the offshore wind farm alpha ventus. With a new wake-added turbulence functionality added to FAST.Farm, good agreement between simulations and measurements is achieved for the considered quantities. We hereby give insights into load characteristics of an offshore wind turbine subjected to single wake conditions.
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021, https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Short summary
As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. We leverage a year of data of two floating lidars to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. We find that almost 100 independent long events occur throughout the year.
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021, https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Short summary
Offshore wind turbines are huge, with rotor blades soon to extend up to nearly 300 m. Accurate modeling of winds across these heights is crucial for accurate estimates of energy production. However, we lack sufficient observations at these heights but have plenty of near-surface observations. Here we show that a basic machine-learning model can provide very accurate estimates of winds in this area, and much better than conventional techniques.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021, https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary
Short summary
The paper analyzes in detail the problem of scaling, considering both the steady-state and transient response cases, including the effects of aerodynamics, elasticity, inertia, gravity, and actuation. After a general theoretical analysis of the problem, the article considers two alternative ways of designing a scaled rotor. The two methods are then applied to the scaling of a 10 MW turbine of 180 m in diameter down to three different sizes (54, 27, and 2.8 m).
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Emmanuel Branlard, Dylan Giardina, and Cameron S. D. Brown
Wind Energ. Sci., 5, 1155–1167, https://doi.org/10.5194/wes-5-1155-2020, https://doi.org/10.5194/wes-5-1155-2020, 2020
Short summary
Short summary
The paper presents an application of the Kalman filtering technique to estimate loads on a wind turbine. The approach combines a mechanical model and a set of measurements to estimate signals that are not available in the measurements, such as wind speed, thrust, tower position, and tower loads. The model is severalfold faster than real time and is intended to be run online, for instance, to evaluate real-time fatigue life consumption of a field turbine using a digital twin.
Cited articles
Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022. a, b
Abbas, N. J., Zalkind, D., Mudafort, R. M., Hylander, G., Mulders, S., Heffernan, D., and Bortolotti, P.: NREL/ROSCO: Version 2.7.0, Zenodo [code], https://doi.org/10.5281/zenodo.7629837, 2023. a
Asmuth, H., Navarro Diaz, G. P., Madsen, H. A., Branlard, E., Meyer Forsting, A. R., Nilsson, K., Jonkman, J., and Ivanell, S.: Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements, Renew. Energ., 191, 868–887, https://doi.org/10.1016/j.renene.2022.04.047, 2022. a, b, c
Boorsma, K., Hartvelt, M., and Orsi, L.: Application of the lifting line vortex wake method to dynamic load case simulations, J. Phys. Conf. Ser., 753, 022030, https://doi.org/10.1088/1742-6596/753/2/022030, 2016. a
Boorsma, K., Schepers, G., Aagard Madsen, H., Pirrung, G., Sørensen, N., Bangga, G., Imiela, M., Grinderslev, C., Meyer Forsting, A., Shen, W. Z., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B., Blondel, F., Gilbert, P., Boisard, R., Höning, L., Greco, L., Testa, C., Branlard, E., Jonkman, J., and Vijayakumar, G.: Progress in the validation of rotor aerodynamic codes using field data, Wind Energ. Sci., 8, 211–230, https://doi.org/10.5194/wes-8-211-2023, 2023. a, b, c
Bossanyi, E. A.: Individual blade pitch control for load reduction, Wind Energy, 6, 119–128, 2003. a
Branlard, E., Mercier, P., Machefaux, E., Gaunaa, M., and Voutsinas, S.: Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach, J. Wind Eng. Ind. Aerod., 151, 37–47, 2016. a
Branlard, E., Jonkman, B., Pirrung, G. R., Dixon, K., and Jonkman, J.: Dynamic inflow and unsteady aerodynamics models for modal and stability analyses in OpenFAST, J. Phys. Conf. Ser., 2265, 1–12, https://doi.org/10.1088/1742-6596/2265/3/032044, 2022. a, b
Branlard, E., Mudafort, R., Bortolotti, P., Hammond, R., Zalkind, D., Stanislawski, B., and Thedin, R.: pyFAST – OpenFAST tools, National Renewable Energy Lab. (NREL), Golden, CO (United States), https://doi.org/10.5281/zenodo.8122172, 2023. a
Collier, W., Ors, D., Barlas, T., Zahle, F., Bortolotti, P., Marten, D., Jensen, S., Branlard, E., Zalkind, D., and Lønbæk, K.: Aeroelastic code comparison using the IEA 22 MW reference turbine, TORQUE 2024, J. Phys.: Conf. Ser., 2767, 052042, https://doi.org/10.1088/1742-6596/2767/5/052042, 2024. a
Damiani, R. R. and Hayman, G.: The Unsteady Aerodynamics Module For FAST8, National Renewable Energy Lab. (NREL), Golden, CO (United States), https://doi.org/10.2172/1576488, 2019. a
Du, Z. and Selig, M.: A 3-D stall-delay model for horizontal axis wind turbine performance prediction, AIAA, 1998 ASME Wind Energy Symposium, 12–15 January 1998, Reno, NV, USA, https://doi.org/10.2514/6.1998-21, 1998. a
Guntur, S., Jonkman, J., Sievers, R., Sprague, M. A., Schreck, S., and Wang, Q.: A validation and code-to-code verification of FAST for a megawatt-scale wind turbine with aeroelastically tailored blades, Wind Energ. Sci., 2, 443–468, https://doi.org/10.5194/wes-2-443-2017, 2017. a, b, c
International Electrotechnical Commission and others: IEC 61400-1 Ed. 3: Wind Turbines-Part 1: Design Requirements, International Electrotechnical Commission, Edition 0, ISBN 2831881617, 2005. a
Jelenić, G. and Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics, Comput. Method. Appl. M., 171, 141–171, https://doi.org/10.1016/S0045-7825(98)00249-7, 1999. a
Jonkman, J. and Sprague, M.: OpenFAST Documentation Release v3.0.0, National Renewable Energy Laboratory, Golden, CO, USA, 2021. a
Jonkman, B., Mudafort, R. M., Platt, A., et al.: OpenFAST/openfast: v3.4.1 (v3.4.1), Zenodo [code], https://doi.org/10.5281/zenodo.7632926, 2023. a
Larsen, G. C. and Hansen, K. S.: De-trending of wind speed variance based on first-order and second-order statistical moments only, Wind Energy, 17, 1905–1924, 2014. a
Madsen, H. A., Larsen, T. J., Pirrung, G. R., Li, A., and Zahle, F.: Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact, Wind Energ. Sci., 5, 1–27, https://doi.org/10.5194/wes-5-1-2020, 2020. a, b
Mann, J., Peña, A., Troldborg, N., and Andersen, S. J.: How does turbulence change approaching a rotor?, Wind Energ. Sci., 3, 293–300, https://doi.org/10.5194/wes-3-293-2018, 2018. a
Nybø, A., Nielsen, F. G., and Godvik, M.: Analysis of turbulence models fitted to site, and their impact on the response of a bottom-fixed wind turbine, J. Phys. Conf. Ser., 2018, 012028, https://doi.org/10.1088/1742-6596/2018/1/012028, 2021. a, b
Pedersen, M. M., Larsen, T. J., Madsen, H. A., and Larsen, G. C.: More accurate aeroelastic wind-turbine load simulations using detailed inflow information, Wind Energ. Sci., 4, 303–323, https://doi.org/10.5194/wes-4-303-2019, 2019. a, b, c, d
Perez-Becker, S., Papi, F., Saverin, J., Marten, D., Bianchini, A., and Paschereit, C. O.: Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method, Wind Energ. Sci., 5, 721–743, https://doi.org/10.5194/wes-5-721-2020, 2020. a, b
Pitt, D. M. and Peters, D. A.: Theoretical prediction of dynamic inflow derivatives, sixth European rotorcraft and powered lift aircraft forum, No. 47, 16–19 September 1980, Bristol, England, 1980. a
Rinker, J., Gaertner, E., Zahle, F., Skrzypiński, W., Abbas, N., Bredmose, H., Barter, G., and Dykes, K.: Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine, J. Phys. Conf. Ser., 1618, 052052, https://doi.org/10.1088/1742-6596/1618/5/052052, 2020. a
Rinker, J. M.: PyConTurb: an open-source constrained turbulence generator, J. Phys. Conf. Ser., 1037, 062032, https://doi.org/10.1088/1742-6596/1037/6/062032, 2018. a
Rinker, J. M.: Impact of rotor size on aeroelastic uncertainty with lidar-constrained turbulence, J. Phys. Conf. Ser., 2265, 032011, https://doi.org/10.1088/1742-6596/2265/3/032011, 2022. a
Rybchuk, A., Hassanaly, M., Hamilton, N., Doubrawa, P., Fulton, M. J., and Martínez-Tossas, L. A.: Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models, Phys. Fluids, 35, 126604, https://doi.org/10.1063/5.0172559, 2023. a
Schepers, J., Boorsma, K., Madsen, H., Pirrung, G., Bangga, G., Guma, G., Lutz, T., Potentier, T., Braud, C., Guilmineau, E., Croce, A., Cacciola, S., Schaffarczyk, A. P., Lobo, B. A., Ivanell, S., Asmuth, H., Bertagnolio, F., Sørensen, N., Shen, W. Z., Grinderslev, C., Forsting, A. M., Blondel, F., Bozonnet, P., Boisard, R., Yassin, K., Honing, L., Stoevesandt, B., Imiela, M., Greco, L., Testa, C., Magionesi, F., Vijayakumar, G., Ananthan, S., Sprague, M. A., Branlard, E., Jonkman, J., Carrion, M., Parkinson, S., and Cicirello, E.: Final report of Task 29, Phase IV: Detailed Aerodynamics of Wind Turbines, Tech. rep., IEA Wind, Task 29, IEA Wind, https://doi.org/10.5281/zenodo.4813068, 2021. a, b, c, d
Sim, C., Basu, S., and Manuel, L.: On space-time resolution of inflow representations for wind turbine loads analysis, Energies, 5, 2071–2092, 2012. a
Van Engelen, T. and Van Der Hooft, E.: Individual pitch control inventory, Technical Univ. of Delft, Delft, the Netherlands, 2005. a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a
Volk, D. M., Kallesøe, B. S., Johnson, S., Pirrung, G. R., Riva, R., and Barnaud, F.: Large wind turbine edge instability field validation, J. Phys. Conf. Ser., 1618, 052014, https://doi.org/10.1088/1742-6596/1618/5/052014, 2020. a
Wang, Q., Sprague, M. A., Jonkman, J., Johnson, N., and Jonkman, B.: BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework, Wind Energy, 20, 1439–1462, https://doi.org/10.1002/we.2101, 2017. a
Zierath, J., Rachholz, R., and Woernle, C.: Field test validation of Flex5, MSC. Adams, alaska/Wind and SIMPACK for load calculations on wind turbines, Wind Energy, 19, 1201–1222, 2016. a
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare...
Altmetrics
Final-revised paper
Preprint