Articles | Volume 9, issue 2
https://doi.org/10.5194/wes-9-359-2024
https://doi.org/10.5194/wes-9-359-2024
Research article
 | 
15 Feb 2024
Research article |  | 15 Feb 2024

Hybrid-Lambda: a low-specific-rating rotor concept for offshore wind turbines

Daniel Ribnitzky, Frederik Berger, Vlaho Petrović, and Martin Kühn

Related authors

Synchronised WindScanner field measurements of the induction zone between two closely spaced wind turbines
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024,https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11,https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
Wind vane correction during yaw misalignment for horizontal-axis wind turbines
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023,https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Increased power gains from wake steering control using preview wind direction information
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023,https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Implementation of a Near-Wake Region within the Curled-Wake Model
Paul Hulsman, Luis A. Martínez-Tossas, Nicholas Hamilton, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-112,https://doi.org/10.5194/wes-2023-112, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Design concepts and methods for plants, turbines, and components
One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024,https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Identification of electro-mechanical interactions in wind turbines
Fiona Dominique Lüdecke, Martin Schmid, and Po Wen Cheng
Wind Energ. Sci., 9, 1527–1545, https://doi.org/10.5194/wes-9-1527-2024,https://doi.org/10.5194/wes-9-1527-2024, 2024
Short summary
A sensitivity-based estimation method for investigating control co-design relevance
Jenna Iori, Carlo Luigi Bottasso, and Michael Kenneth McWilliam
Wind Energ. Sci., 9, 1289–1304, https://doi.org/10.5194/wes-9-1289-2024,https://doi.org/10.5194/wes-9-1289-2024, 2024
Short summary
Validation of aeroelastic dynamic model of active trailing edge flap system tested on a 4.3 MW wind turbine
Andrea Gamberini, Thanasis Barlas, Alejandro Gomez Gonzalez, and Helge Aagaard Madsen
Wind Energ. Sci., 9, 1229–1249, https://doi.org/10.5194/wes-9-1229-2024,https://doi.org/10.5194/wes-9-1229-2024, 2024
Short summary
Effect of Blade Inclination Angle for Straight Bladed Vertical Axis Wind Turbines
Laurence Boyd Morgan, Abbas Kazemi Amiri, William Leithead, and James Carroll
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-42,https://doi.org/10.5194/wes-2024-42, 2024
Revised manuscript accepted for WES
Short summary

Cited articles

Agarwala, R. and Ro, P. I.: Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades, Journal of Wind Energy, 2015, 1–12, https://doi.org/10.1155/2015/895974, 2015. a
Barter, G. E., Sethuraman, L., Bortolotti, P., Keller, J., and Torrey, D. A.: Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines, Appl. Energ., 344, 121272, https://doi.org/10.1016/j.apenergy.2023.121272, 2023. a
Baumgärtner, D., Borowski, J., Deters, C., Dietrich, E., Dörenkämper, M., Fricke, J., Hans, F., Jersch, T., Leimeister, M., Meyer, T., Neshati, M., Pangalos, G., Quiroz, T., Quistorf, G., Requate, N., Schmidt, J., Schnackenberg, M., Schwegmann, S., Spill, S., Thomas, P., Vollmer, L., Walgern, J., and Widerspan, V.: Weiterentwicklung der Rahmenbedingungen zur Planung von Windenergieanlagen auf See und Netzanbindungssystemen: Endbericht, Fraunhofer IWES, Bremerhaven, https://doi.org/10.24406/publica-2202, 2021. a, b
Berg, J. and Resor, B.: Numerical Manufacturing And Design Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide, Sandia Report, SAND2012-7028, Albuquerque, https://doi.org/10.2172/1051715, 2012. a
Bir, G.: User's Guide to PreComp (Pre-Processor for Computing Composite Blade Properties), National Renewable Energy Laboratory, NREL/TP-500-38929, Golden (US), https://doi.org/10.2172/876556, 2005. a
Download
Short summary
This paper provides an innovative blade design methodology for offshore wind turbines with very large rotors compared to their rated power, which are tailored for an increased power feed-in at low wind speeds. Rather than designing the blade for a single optimized operational point, we include the application of peak shaving in the design process and introduce a design for two tip speed ratios. We describe how enlargement of the rotor diameter can be realized to improve the value of wind power.
Altmetrics
Final-revised paper
Preprint