Articles | Volume 10, issue 4
https://doi.org/10.5194/wes-10-733-2025
https://doi.org/10.5194/wes-10-733-2025
Research article
 | 
22 Apr 2025
Research article |  | 22 Apr 2025

Tall wind profile validation of ERA5, NORA3, and NEWA datasets using lidar observations

Etienne Cheynet, Jan Markus Diezel, Hilde Haakenstad, Øyvind Breivik, Alfredo Peña, and Joachim Reuder

Related authors

SAMURAI-S: Sonic Anemometer on a MUlti-Rotor drone for Atmospheric turbulence Investigation in a Sling load configuration
Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, and Joachim Reuder
Atmos. Meas. Tech., 18, 2103–2124, https://doi.org/10.5194/amt-18-2103-2025,https://doi.org/10.5194/amt-18-2103-2025, 2025
Short summary
Turbulence in a coastal environment: the case of Vindeby
Rieska Mawarni Putri, Etienne Cheynet, Charlotte Obhrai, and Jasna Bogunovic Jakobsen
Wind Energ. Sci., 7, 1693–1710, https://doi.org/10.5194/wes-7-1693-2022,https://doi.org/10.5194/wes-7-1693-2022, 2022
Short summary
The COTUR project: remote sensing of offshore turbulence for wind energy application
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021,https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Simulated meteorological impacts of offshore wind turbines and sensitivity to the amount of added turbulence kinetic energy
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci., 10, 1269–1301, https://doi.org/10.5194/wes-10-1269-2025,https://doi.org/10.5194/wes-10-1269-2025, 2025
Short summary
Evaluating mesoscale model predictions of diurnal speedup events in the Altamont Pass Wind Resource Area of California
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci., 10, 1187–1209, https://doi.org/10.5194/wes-10-1187-2025,https://doi.org/10.5194/wes-10-1187-2025, 2025
Short summary
Swell impacts on an offshore wind farm in stable boundary layer: wake flow and energy budget analysis
Xu Ning and Mostafa Bakhoday-Paskyabi
Wind Energ. Sci., 10, 1101–1122, https://doi.org/10.5194/wes-10-1101-2025,https://doi.org/10.5194/wes-10-1101-2025, 2025
Short summary
An analytical formulation for turbulence kinetic energy added by wind turbines based on large-eddy simulation
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025,https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Flow acceleration statistics: a new paradigm for wind-driven loads, towards probabilistic turbine design
Mark Kelly
Wind Energ. Sci., 10, 535–558, https://doi.org/10.5194/wes-10-535-2025,https://doi.org/10.5194/wes-10-535-2025, 2025
Short summary

Cited articles

Akima, H.: A method of bivariate interpolation and smooth surface fitting based on local procedures, Commun. ACM, 17, 18–20, https://doi.org/10.1145/360767.360779, 1974. a
Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey, J. Electron. Imaging, 11, 157–176, https://doi.org/10.1117/1.1455013, 2002. a
Antonini, E. G., Virgüez, E., Ashfaq, S., Duan, L., Ruggles, T. H., and Caldeira, K.: Identification of reliable locations for wind power generation through a global analysis of wind droughts, Commun. Earth Environ., 5, 1–9, https://doi.org/10.1038/s43247-024-01260-7, 2024. a
Antoniou, I., Pedersen, S. M., and Enevoldsen, P. B.: Wind shear and uncertainties in power curve measurement and wind resources, Wind Engineering, 33, 449–468, https://doi.org/10.1260/030952409790291208, 2009. a
Banta, R. M., Pichugina, Y. L., Kelley, N. D., Hardesty, R. M., and Brewer, W. A.: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar, B. Am. Meteorol. Soc., 94, 883–902, https://doi.org/10.1175/BAMS-D-11-00057.1, 2013. a
Download
Short summary
This study analyses wind speed data at heights up to 500 m to support the design of future large offshore wind turbines and airborne wind energy systems.  We compared three wind models (ERA5, NORA3, and NEWA) with lidar measurements at five sites using four performance metrics. ERA5 and NORA3 performed equally well offshore, with NORA3 typically outperforming the other two models onshore. More generally, the optimal choice of model depends on site, altitude, and evaluation criteria.
Share
Altmetrics
Final-revised paper
Preprint