Articles | Volume 6, issue 6
Wind Energ. Sci., 6, 1379–1400, 2021
Wind Energ. Sci., 6, 1379–1400, 2021

Research article 04 Nov 2021

Research article | 04 Nov 2021

Satellite-based estimation of roughness lengths and displacement heights for wind resource modelling

Rogier Floors et al.

Related authors

Rossby number similarity of an atmospheric RANS model using limited-length-scale turbulence closures extended to unstable stratification
Maarten Paul van der Laan, Mark Kelly, Rogier Floors, and Alfredo Peña
Wind Energ. Sci., 5, 355–374,,, 2020
Short summary
From lidar scans to roughness maps for wind resource modelling in forested areas
Rogier Floors, Peter Enevoldsen, Neil Davis, Johan Arnqvist, and Ebba Dellwik
Wind Energ. Sci., 3, 353–370,,, 2018
Short summary

Related subject area

Wind and turbulence
The smoother the better? A comparison of six post-processing methods to improve short-term offshore wind power forecasts in the Baltic Sea
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226,,, 2021
Short summary
Statistical impact of wind-speed ramp events on turbines, via observations and coupled fluid-dynamic and aeroelastic simulations
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245,,, 2021
Short summary
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142,,, 2021
Short summary
Recovery processes in a large offshore wind farm
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106,,, 2021
Short summary
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059,,, 2021
Short summary

Cited articles

Badger, J., Hahmann, A., Larsen, X. G., Badger, M., Kelly, M., Davis, N., Olsen, B. T., and Mortensen, N. G.: The Global Wind Atlas, Tech. rep., DTU Wind Energy, Roskilde, Denmark, available at:​​​​​​​ (last access: 26 October 2021), 2015. a, b
Bergström, H., Alfredsson, H., Arnqvist, J., Carlén, I., Dellwik, E., Fransson, J., Ganander, H., Mohr, M., Segalini, A., Söderberg, S., Bergström, H., Alfredsson, H., Carlén, J., Dellwik, I., Ganander, J., and Mohr, H.: Wind power in forests: Winds and effects on loads, Tech. rep., Uppsala University, Stockholm, Sweden, available at:​​​​​​​ (last access: 26 October 2021), 2013. a
Blackadar, A. K. and Tennekes, H.: Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers, J. Atmos. Sci., 25, 1015–1020,<1015:ASINBP>2.0.CO;2, 1968. a
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A Training Algorithm for Optimal Margin Classifiers, in: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 27–29 July​​​​​​​ 1992, Pittsburg, USA, ACM Press, 144–152, 1992. a
Bottema, M., Klaasen, W., and Hopwood, W.: Landscape Roughness Parameters for Sherwood Forest – Validation of Aggregation Models, Bound.-Lay. Meteorol., 89, 317–347,, 1998. a
Short summary
Wind turbines are frequently placed in forests. We investigate the potential of using satellites to characterize the land surface for wind flow modelling. Maps of forest properties are generated from satellite data and converted to flow modelling maps. Validation is carried out at 10 sites. Using the novel satellite-based maps leads to lower errors of the power density than land cover databases, which demonstrates the value of using satellite-based land cover maps for flow modelling.