Badger, J., Hahmann, A., Larsen, X. G., Badger, M., Kelly, M., Davis, N., Olsen, B. T., and Mortensen, N. G.: The Global Wind Atlas, Tech. rep., DTU Wind Energy, Roskilde, Denmark, available at:
https://energiforskning.dk/sites/energiforskning.dk/files/slutrapporter/gwa_64011-0347_finalreport.pdf (last access: 26 October 2021),
2015.
a,
b
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996. a
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189,
https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971.
a
Copernicus Land Monitoring Service: CORINE Land Cover 2018, Copernicus Land Monitoring Service [data set], available at:
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download, last access: 26 October 2021
a,
b
Council of Scientific & Industrial Research (CSIR): WASA data, available at:
http://wasadata.csir.co.za/wasa1/WASAData, last access: 26 October 2021.
a,
b
Csillik, O., Kumar, P., and Asner, G. P.: Challenges in estimating tropical
forest canopy height from planet dove imagery, Remote Sens., 12, 1160,
https://doi.org/10.3390/rs12071160, 2020.
a
De Bruin, H. A. and Moore, C. J.: Zero-plane displacement and roughness
length for tall vegetation, derived from a simple mass conservation
hypothesis, Bound.-Lay. Meteorol., 31, 39–49,
https://doi.org/10.1007/BF00120033, 1985.
a
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102,
https://doi.org/10.5194/gmd-13-5079-2020, 2020.
a,
b
EMD international: INNOWIND data layers, available at:
https://help.emd.dk/mediawiki/index.php?title=Innowind_Premium_Data_Layers,
last access: 26 October 2021. a
Enevoldsen, P.: Managing the Risks of Wind Farms in Forested Areas: Design
Principles for Northern Europe, PhD thesis, Aarhus university, Aarhus, Denmark, 2017.
a,
b
ESA: ESA-CCI Land Cover, ESA [data set], available at:
http://maps.elie.ucl.ac.be/CCI/viewer/, last access: last access: 26 October 2021. a
European Space Agency (ESA) Climate Change Initiative (CCI): Land cover
classification gridded maps from 1992 to present derived from satellite
observations, v2.0.7, available at:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview (last access: 26 October 2021),
2015. a
Fagua, J. C., Jantz, P., Rodriguez-Buritica, S., Duncanson, L., and Goetz,
S. J.: Integrating LiDAR, multispectral and SAR data to estimate and map
canopy height in tropical forests, Remote Sens., 11, 2697,
https://doi.org/10.3390/rs11222697, 2019.
a
Floors, R. and Nielsen, M.: Estimating Air Density Using Observations and
Re-Analysis Outputs for Wind Energy Purposes, Energies, 12, 2038,
https://doi.org/10.3390/en12112038, 2019.
a
Floors, R., Enevoldsen, P., Davis, N., Arnqvist, J., and Dellwik, E.: From lidar scans to roughness maps for wind resource modelling in forested areas, Wind Energ. Sci., 3, 353–370,
https://doi.org/10.5194/wes-3-353-2018, 2018.
a,
b,
c,
d,
e,
f,
g,
h,
i
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type
Yearly L3 Global 500m SIN Grid V006, distributed by NASA EOSDIS Land Processes DAAC, NASA [data set],
https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
a,
b
Global Wind Energy Council: Global Wind Energy Report: Annual Market Update 2019, available at:
http://www.gwec.net (last access: 26 October 2021), 2019. a
Guzinski, R. and Nieto, H.: Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations, Remote Sens. Environ., 221, 157–172,
https://doi.org/10.1016/j.rse.2018.11.019, 2019.
a,
b
Huang, H., Liu, C., and Wang, X.: Constructing a finer-resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR data and height patterns of natural forests and plantations, Remote Sens., 11, 1740,
https://doi.org/10.3390/rs11151740, 2019.
a
Jancewicz, K. and Szymanowski, M.: The Relevance of Surface Roughness Data
Qualities in Diagnostic Modeling of Wind Velocity in Complex Terrain: A Case
Study from the Śnieżnik Massif (SW Poland), Pure Appl. Geophys.,
174, 569–594,
https://doi.org/10.1007/s00024-016-1297-9, 2017.
a
Kelly, M. and Jørgensen, H. E.: Statistical characterization of roughness uncertainty and impact on wind resource estimation, Wind Energ. Sci., 2, 189–209,
https://doi.org/10.5194/wes-2-189-2017, 2017.
a,
b
Lantmäteriet:
https://www.lantmateriet.se/en/maps-and-geographic-information/open-geodata/#faq=feef, last access: 18 March 2021. a
Li, W., Niu, Z., Shang, R., Qin, Y., Wang, L., and Chen, H.: High-resolution
mapping of forest canopy height using machine learning by coupling ICESat-2
LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data, Int. J. Appl. Earth Obs., 92, 102163,
https://doi.org/10.1016/j.jag.2020.102163, 2020.
a,
b
Meyers, T. and Tha Paw U, K.: Testing of a higher-order closure model for
modeling airflow within and above plant canopies, Bound.-Lay. Meteorol.,
37, 297–311,
https://doi.org/10.1007/BF00122991, 1986.
a
National Institute of Electricity and Clean Energies (INEEL): MEWA data, available at:
https://aems.ineel.mx/aemdata/MemberPages/Download.aspx?lang=EN,
last access: 26 October 2021.
a,
b
Popescu, S. C., Wynne, R. H., and Nelson, R. F.: Estimating plot-level tree
heights with lidar: Local filtering with a canopy-height based variable
window size, Comput. Electron. Agr., 37, 71–95,
https://doi.org/10.1016/S0168-1699(02)00121-7, 2003.
a
Raupach, M. R.: Simplified expressions for vegetation roughness length and
zero-plane displacement as functions of canopy height and area index,
Bound.-Lay. Meteorol., 71, 211–216,
https://doi.org/10.1007/BF00709229, 1994.
a,
b,
c,
d
Sogachev, A., Menzhulin, G. V., Heimann, M., and Lloyd, J.: A simple
three-dimensional canopy – planetary boundary layer simulation model for
scalar concentrations and fluxes, Tellus B, 54,
784–819,
https://doi.org/10.3402/tellusb.v54i5.16729, 2002.
a
Sogachev, A., Cavar, D., Kelly, M. C., and Bechmann, A.: Effective roughness
and displacement height over forested areas, via reduced-dimension CFD,
Tech. rep., DTU, Roskilde, Denmark, 2017.
a,
b
Styrelsen for Dataforsyning og Effektivisering: Danmarks Højdemodel, DHM/Terræn, Tech. Rep. August, Styrelsen for Dataforsyning og Effektivisering, available at:
https://download.kortforsyningen.dk/content/dhmh%C3%B8jdekurver (last access: 26 October 2021),
2016. a
Taylor, P. A.: Comments and further analysis on effective roughness lengths
for use in numerical three-dimensional models, Bound.-Lay. Meteorol., 39,
403–418,
https://doi.org/10.1007/BF00125144, 1987.
a
Thøgersen, M.: EMD Wiki, available at:
https://help.emd.dk/mediawiki/index.php?title=Category:Digital_Roughness_Data (last access: 26 October 2021),
2021.
a,
b,
c,
d
Troen, I.: A high resolution spectral model for flow in complex terrain, American Meteorological Society, Boston, MA, USA, 417–420, 1990.
a,
b,
c
Troen, I. and Petersen, E. L.: European Wind Atlas, Risø National
Laboratory, Roskilde, Denmark, 1989.
a,
b,
c,
d,
e,
f