Bass, J. H., Rebbeck, M., Landberg, L., Cabré, M., and Hunter, A.: An
Improved Measure-Correlate-Predict Algortihm for the Prediction of the Long
Term Wind Climate in Regions of Complex Environment: Final Report JOR3-CT98-0295, Renewable Energy Systems Ltd (UK), Risø National Laboratory (Denmark), Ecotecnia (Spain), University of Sunderland (UK), 2000.
a,
b,
c
Basse, A., Callies, D., and Groetzner, A.: Ergebnisbericht zum Round Robin Test “Langzeitkorrektur von Kurzzeitwindmessungen”, available at:
http://www.uni-kassel.de/eecs/fachgebiete/integrierte-energiesysteme/aktuelles/nachrichten/article/langzeitkorrektur-von-kurzzeitwindmessungen.html
(last access: 28 December 2020), 2018. a
Basse, A., Pauscher, L., and Callies, D.: Improving Vertical Wind Speed
Extrapolation Using Short-Term Lidar Measurements, Remote Sens., 12, 1091,
https://doi.org/10.3390/rs12071091, 2020.
a
Bilgili, M., Sahin, B., and Yasar, A.: Application of artificial neural
networks for the wind speed prediction of target station using reference
stations data, Renew. Energy, 32, 2350–2360,
https://doi.org/10.1016/j.renene.2006.12.001, 2007.
a
Bradley, S.: Atmospheric acoustic remote sensing, CRC Press, Boca Raton,
Florida, 2008. a
Carta, J. A., Velázquez, S., and Cabrera, P.: A review of
measure-correlate-predict (MCP) methods used to estimate long-term wind
characteristics at a target site, Renew. Sustain. Energ. Rev., 27, 362–400,
https://doi.org/10.1016/j.rser.2013.07.004, 2013.
a,
b,
c,
d,
e,
f,
g
CDS: ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global
Climate, Copernicus Climate Change Service Climate Data Store (CDS), ECMWF,
available at:
https://cds.climate.copernicus.eu/cdsapp#!/ (last access: June–July 2020), 2018. a
Coleman, H. W.: Experimentation, validation, and uncertainty analysis for
engineers, John Wiley & Sons, Hoboken, NJ, 2009. a
Draper, N. R. and Smith, H.: Applied regression analysis, Wiley series in
probability and statistics Texts and references section, 3rd Edn., Wiley, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto,
https://doi.org/10.1002/9781118625590, 1998.
a
EMD: EMD International A/S: EMD-ConWx, available at:
http://www2.emd.dk/admin/helpWiki/index.php/EMD-ConWx_Meso_Data_Europe (last access: 28 December 2020), 2020a. a
EMD: EMD International A/S: EMD-WRF Europe
+, available at:
https://www.emd.dk/data-services/mesoscale-time-series/pre-run-time-series/emd-wrf-europe-mesoscale-data-set (last access: 28 December 2020), 2020b. a
Emeis, S., Harris, M., and Banta, R. M.: Boundary-layer anemometry by optical
remote sensing for wind energy applications, Meteorol. Z., 16, 337–347,
https://doi.org/10.1127/0941-2948/2007/0225, 2007.
a
Enercon: ENERCON Product Portfolio: Overview of Wind Energy Converters – E-115, available at:
https://www.enercon.de/en/downloads/ (last access: 28 December 2020), 2019. a
FGW e.V.: Fördergesellschaft Windenergie und andere dezentrale Energien (FGW): Technical Guidelines for Wind Turbines: Determination of Wind
Potential an Energy Yield (TR6), Berlin, 2020. a
García-Rojo, R.: Algorithm for the Estimation of the Long-Term Wind Climate at a Meteorological Mast Using a Joint Probabilistic Approach, Wind
Eng., 28, 213–224, 2004. a
GMAO – Global Modeling and Assimilation Office: MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, GES DISC – Goddard Earth Sciences Data and Information Services Center, Greenbelt, MD, USA,
https://doi.org/10.5067/VJAFPLI1CSIV, 2015.
a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
a
Klink, K.: Trends and Interannual Variability of Wind Speed Distributions in
Minnesota, J. Climate, 15, 3311–3317, 2002. a
Lackner, M. A., Rogers, A. L., and Manwell, J. F.: Uncertainty Analysis in
MCP-Based Wind Resource Assessment and Energy Production Estimation, J. Wind Eng. Indust. Aerodynam., 130, 031006,
https://doi.org/10.1115/1.2931499, 2008.
a,
b,
c
Leleu, K.: Leosphere Windcube User Guide, Version V.1.2 (March 2019), Saclay, France, 2019. a
Liléo, S., Berge, E., Undheim, O., Klinkert, R., and Bredesen, R. E.: Long-term correction of wind measurements, State-of-the art, guidelines and future work, Tech. rep., Elforsk report, January 2013.
a,
b,
c
López, P., Velo, R., and Maseda, F.: Effect of direction on wind speed
estimation in complex terrain using neural networks, Renew. Energy, 33,
2266–2272,
https://doi.org/10.1016/j.renene.2007.12.020, 2008.
a
MEASNET: Measuring Network of Wind Energy Institutes: Evaluation of
Site-Specific Wind Conditions: Version 2 April 2016, available at:
http://www.measnet.com/wp-content/uploads/2016/05/Measnet_SiteAssessment_V2.0.pdf
(last access: 10 November 2020), 2016. a
Miguel, J. V. P., Fadigas, E. A., and Sauer, I. L.: The Influence of the Wind
Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind
Resource Assessment, Energies, 12, 3606,
https://doi.org/10.3390/en12193606, 2019.
a,
b
NASA: Global Modeling and Assimilation Office: Modern-Era Retrospective
analysis for Research and Applications, MERRA Version 2, available at:
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (last access: 28 December 2020), 2019. a
Pauscher, L., Callies, D., Klaas, T., and Foken, T.: Wind observations from a
forested hill: Relating turbulence statistics to surface characteristics in
hilly and patchy terrain, Meteorol. Z., 27, 43–57,
https://doi.org/10.1127/metz/2017/0863, 2018.
a
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.: The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions, B. Am. Meteorol. Soc., 98, 1717–1737,
https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
a
Pryor, S. C., Barthelmie, R. J., and Schoof, J. T.: Inter-annual variability of wind indices across Europe, Wind Energy, 9, 27–38,
https://doi.org/10.1002/we.178,
2006.
a,
b
Pryor, S. C., Shepherd, T. J., and Barthelmie, R. J.: Interannual variability
of wind climates and wind turbine annual energy production, Wind Energ.
Sci., 3, 651–665,
https://doi.org/10.5194/wes-3-651-2018, 2018.
a
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J.:
What global reanalysis best represents near–surface winds?, Q. J. Roy. Meteorol. Soc., 145, 3236–3251,
https://doi.org/10.1002/qj.3616, 2019.
a
Rogers, A. L., Rogers, J. W., and Manwell, J. F.: Comparison of the performance of four measure–correlate–predict algorithms, J. Wind Eng.
Indust. Aerodynam., 93, 243–264,
https://doi.org/10.1016/j.jweia.2004.12.002, 2005a.
a,
b,
c,
d,
e,
f,
g
Rogers, A. L., Rogers, J. W., and Manwell, J. F.: Uncertainties in Results of
Measure-Correlate-Predict Analyses, in: European Wind Energy Conference and
Exhibition 2006, EWEC 2006, 27 February–2 March 2006, Athens, Greece, 2005b. a
Romo Perea, A., Amezcua, J., and Probst, O.: Validation of three new
measure-correlate-predict models for the long-term prospection of the wind
resource, J. Renew. Sustain. Energ., 3, 023105,
https://doi.org/10.1063/1.3574447, 2011.
a,
b,
c,
d,
e
Saarnak, E., Bergström, H., and Söderberg, S.: Uncertainties Connected to Long-Term Correction of Wind Observations, Wind Eng., 38, 233–248,
https://doi.org/10.1260/0309-524X.38.3.233, 2014.
a,
b
Sørensen, J. D., Sørensen, J. D., and Sørensen, J. N.: Wind energy
systems: Optimising design and construction for safe and reliable operation,
in: vol. Number 10 of Woodhead Publishing Series in Energy, Woodhead Publishing, Cambridge, UK, 2011. a
Taylor, M., Mackiewicz, P., Brower, M. C., and Markus, M.: An Analysis of Wind Resource Uncertainty in Energy Production Estimates, AWS Truewind, available at:
https://www.awstruepower.com/assets/An-Analysis-of-Wind-Resource-Uncertainty-in-Energy-
Production-Estimates.pdf
(last access: 15 October 2020), 2004.
a,
b
Velázquez, S., Carta, J. A., and Matías, J. M.: Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands, Appl. Energy, 88, 3869–3881,
https://doi.org/10.1016/j.apenergy.2011.05.007, 2011.
a
Weekes, S. M. and Tomlin, A. S.: Data efficient measure-correlate-predict
approaches to wind resource assessment for small-scale wind energy, Renew.
Energy, 63, 162–171,
https://doi.org/10.1016/j.renene.2013.08.033, 2014a.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Weekes, S. M. and Tomlin, A. S.: Low-cost wind resource assessment for
small-scale turbine installations using site pre-screening and short-term
wind measurements, IET Renew. Power Generat., 8, 349–358,
https://doi.org/10.1049/iet-rpg.2013.0152, 2014b.
a
Weekes, S. M. and Tomlin, A. S.: Comparison between the bivariate Weibull
probability approach and linear regression for assessment of the long-term
wind energy resource using MCP, Renew. Energy, 68, 529–539,
https://doi.org/10.1016/j.renene.2014.02.020, 2014c.
a,
b,
c
Weekes, S. M., Tomlin, A. S., Vosper, S. B., Skea, A. K., Gallani, M. L., and
Standen, J. J.: Long-term wind resource assessment for small and medium-scale
turbines using operational forecast data and measure–correlate–predict,
Renew. Energy, 81, 760–769,
https://doi.org/10.1016/j.renene.2015.03.066, 2015.
a,
b,
c
Zhang, J., Chowdhury, S., Messac, A., and Hodge, B.-M.: A hybrid measure-correlate-predict method for long-term wind condition assessment, Energ. Convers. Manage., 87, 697–710,
https://doi.org/10.1016/j.enconman.2014.07.057, 2014.
a,
b