Articles | Volume 6, issue 6
https://doi.org/10.5194/wes-6-1473-2021
https://doi.org/10.5194/wes-6-1473-2021
Research article
 | 
16 Nov 2021
Research article |  | 16 Nov 2021

Seasonal effects in the long-term correction of short-term wind measurements using reanalysis data

Alexander Basse, Doron Callies, Anselm Grötzner, and Lukas Pauscher

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Albrecht, C. and Klesitz, M.: Long Term Correlation of Wind Measurements Using Neural Networks: A New Method for Post-Processing Short-Time Measurement Data, in: Wind Power Asia 2006, available at: https://al-pro.eu/de.alpro.download.php (last access: 12 November 2021), 2006. a, b
anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas D-3km.E5, available at: https://anemos.de/files/windatlanten/Dokumentation-D-3km.ERA5-standortspezifisch-2020-03.pdf (last access: 28 December 2020), 2020a. a
anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas D-3km.M2, available at: https://anemos.de/files/windatlanten/Dokumentation-D-3km.M2-standortspezifisch-2019-02.pdf (last access: 28 December 2020), 2020b. a
anemos: anemos – Gesellschaft für Umweltmeteorologie mbH: anemos Windatlas (general information), available at: https://www.anemos.de/en/windatlas.php (last access: 15 January 2021), 2020c. a, b
Bass, J. H., Rebbeck, M., Landberg, L., Cabré, M., and Hunter, A.: An Improved Measure-Correlate-Predict Algortihm for the Prediction of the Long Term Wind Climate in Regions of Complex Environment: Final Report JOR3-CT98-0295, Renewable Energy Systems Ltd (UK), Risø National Laboratory (Denmark), Ecotecnia (Spain), University of Sunderland (UK), 2000. a, b, c
Download
Short summary
This study investigates systematic, seasonal biases in the long-term correction of short-term wind measurements (< 1 year). Two popular measure–correlate–predict (MCP) methods yield remarkably different results. Six reanalysis data sets serve as long-term data. Besides experimental results, theoretical findings are presented which link the mechanics of the methods and the properties of the reanalysis data sets to the observations. Finally, recommendations for wind park planners are derived.
Altmetrics
Final-revised paper
Preprint