Barber, S., Schubiger, A., Koller, S., Eggli, D., Radi, A., Rumpf, A., and
Knaus, H.: A New Decision Process for Choosing the Wind Resource Assessment
Workflow with the Best Compromise between Accuracy and Costs for a Given
Project in Complex Terrain, Energies, 15, 1110,
https://doi.org/10.3390/en15031110, 2022.
a,
b,
c,
d
Bechmann, A., Sørensen, N. N., Berg, J., Mann, J., and Réthoré,
P.-E.: The Bolund Experiment, Part II: Blind Comparison of Microscale Flow
Models, Bound.-Lay. Meteorol., 141, 245–271,
https://doi.org/10.1007/s10546-011-9637-x, 2011.
a
Berg, J., Mann, J., Bechmann, A., Courtney, M. S., and Jørgensen, H. E.: The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill,
Bound.-Lay. Meteorol., 141, 219–243,
https://doi.org/10.1007/s10546-011-9636-y, 2011.
a
Bowen, A. J. and Mortensen, N. G.: Exploring the limits of WAsP the wind atlas analysis and application program, in: European Union wind energy conference, edited by: Zervos, A., Ehmann, H., Helm, P., and Stephens, H. S., H. S. Stephens & Associates, Bedford, ISBN 0952145294, 1996.
a,
b
Jensen, N. O.: A note on wind generator interaction, Risø-M No. 2411, Risø National Laboratory,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf
(last access: 18 July 2022), 1983. a
Knaus, H., Rautenberg, A., and Bange, J.: Model comparison of two different
non-hydrostatic formulations for the Navier-Stokes equations simulating wind
flow in complex terrain, J. Wind Eng. Indust. Aerodynam., 169, 290–307,
https://doi.org/10.1016/j.jweia.2017.07.017, 2017.
a
Larsen, G. C.: A Simple Wake Calculation Procedure, Risø-M No. 2760, Risø National Laboratory.
https://backend.orbit.dtu.dk/ws/portalfiles/portal/55567186/ris_m_2760.pdf
(last access: 18 July 2022), 1988. a
Larsen, G. C., Madsen, H. A., Thomsen, K., and Larsen, T. J.: Wake meandering: a pragmatic approach, Wind Energy, 11, 377–395,
https://doi.org/10.1002/we.267, 2008.
a
Lee, J. C. Y. and Fields, M. J.: An overview of wind-energy-production
prediction bias, losses, and uncertainties, Wind Energ. Sci., 6, 311–365,
https://doi.org/10.5194/wes-6-311-2021, 2021.
a,
b
Liu, J., Chen, J. M., Black, T. A., and Novak, M. D.:
E–
ϵ modelling of turbulent air flow downwind of a model forest edge, Bound.-Lay.
Meteorol., 77, 21–44, 1996. a
Menke, R., Vasiljević, N., Mann, J., and Lundquist, J. K.: Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements, Atmos. Chem. Phys., 19, 2713–2723,
https://doi.org/10.5194/acp-19-2713-2019, 2019.
a
Mortensen, N., Nielsen, M., and Ejsing Jørgensen, H.: Comparison of
Resource and Energy Yield Assessment Procedures 2011–2015: What have we
learned and what needs to be done?, in: Proceedings of the EWEA Annual Event
and Exhibition 2015, European Wind Energy Association (EWEA), paper for
poster presentation; EWEA Annual Conference and Exhibition 2015,
17–20 November 2015, Paris, France,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/118434032/Comparison_of_Resource_and_Energy_Yield_paper.pdf
(last access: 18 July 2022), 2015.
a,
b
Mortensen, N. G., Landberg, L., Troen, I., and Lundtang Petersen, E.: Wind Atlas Analysis and Application program (WAsP): Vol. 1: Getting started, Risø-I No. 666(v.1)(ed.2)(EN), Risø National Laboratory,
https://backend.orbit.dtu.dk/ws/portalfiles/portal/106061302/ris_i_666_EN_v.1_ed.2_.pdf
(last access: 18 July 2022), 1998.
a
Pozo, J. M., Geers, A. J., Villa-Uriol, M.-C., and Frangi, A. F.: Flow
complexity in open systems: interlacing complexity index based on mutual
information, J. Fluid Mech., 825, 704–742,
https://doi.org/10.1017/jfm.2017.392, 2017.
a
Richards, P. and Hoxey, R.: Appropriate boundary conditions for computational
wind engineering models using the
k–
ϵ turbulence model, J. Wind Eng. Indust. Aerodynam., 46-47, 145–153,
https://doi.org/10.1016/0167-6105(93)90124-7, 1993.
a,
b
Rodi, W. and Spalding, D.: PAPER 2 – A Two-Parameter Model of Turbulence, and its Application to Free Jets, in: Numerical Prediction of Flow, Heat
Transfer, Turbulence and Combustion, edited by: Patankar, S. V., Pollard, A.,
Singhal, A. K., and Vanka, S. P., Pergamon, 22–32,
https://doi.org/10.1016/B978-0-08-030937-8.50010-6, 1983.
a,
b
Sayre, R., Frye, C., Karagulle, D., Krauer, J., Breyer, S., Aniello, P.,
Wright, D. J., Payne, D., Adler, C., Warner, H., VanSistine, D. P., and
Cress, J.: A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions, Mount. Res. Dev., 38, 240–249,
https://doi.org/10.1659/MRD-JOURNAL-D-17-00107.1, 2018.
a
Schulz, C., Klein, L., Weihing, P., Lutz, T., and Krämer, E.: CFD Studies on Wind Turbines in Complex Terrain under Atmospheric Inflow Conditions, J.
Phys.: Conf. Ser., 524, 012134,
https://doi.org/10.1088/1742-6596/524/1/012134, 2014.
a
Wiernga, J.: Representative roughness parameters for homogeneous terrain,
Bound.-Lay. Meteorol., 63, 323–363, 1993. a
Wood, N.: The onset of separation in neutral, turbulent flow over hills,
Bound.-Lay. Meteorol., 76, 137–164, 1995. a