Articles | Volume 7, issue 4
Wind Energ. Sci., 7, 1503–1525, 2022
Wind Energ. Sci., 7, 1503–1525, 2022
Research article
19 Jul 2022
Research article | 19 Jul 2022

The wide range of factors contributing to wind resource assessment accuracy in complex terrain

Sarah Barber et al.

Related authors

Parameter analysis of a multi-element airfoil for application to airborne wind energy
Gianluca De Fezza and Sarah Barber
Wind Energ. Sci., 7, 1627–1640,,, 2022
Short summary
Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades
Sarah Barber, Julien Deparday, Yuriy Marykovskiy, Eleni Chatzi, Imad Abdallah, Gregory Duthé, Michele Magno, Tommaso Polonelli, Raphael Fischer, and Hanna Müller
Wind Energ. Sci., 7, 1383–1398,,, 2022
Short summary
Grand Challenges in the Digitalisation of Wind Energy
Andrew Clifton, Sarah Barber, Andrew Bray, Peter Enevoldsen, Jason Fields, Anna Maria Sempreviva, Lindy Williams, Julian Quick, Mike Purdue, Philip Totaro, and Yu Ding
Wind Energ. Sci. Discuss.,,, 2022
Preprint under review for WES
Short summary
Research challenges and needs for the deployment of wind energy in atmospherically complex locations
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci. Discuss.,,, 2022
Revised manuscript under review for WES
Short summary
Evaluation of the lattice Boltzmann method for wind modelling in complex terrain
Alain Schubiger, Sarah Barber, and Henrik Nordborg
Wind Energ. Sci., 5, 1507–1519,,, 2020
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
Spatiotemporal observations of nocturnal low-level jets and impacts on wind power production
Eduardo Weide Luiz and Stephanie Fiedler
Wind Energ. Sci., 7, 1575–1591,,, 2022
Short summary
Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification
Patrick Letzgus, Giorgia Guma, and Thorsten Lutz
Wind Energ. Sci., 7, 1551–1573,,, 2022
Short summary
Brief communication: How does complex terrain change the power curve of a wind turbine?
Niels Troldborg, Søren J. Andersen, Emily L. Hodgson, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 1527–1532,,, 2022
Short summary
High-resolution offshore wind resource assessment at turbine hub height with Sentinel-1 synthetic aperture radar (SAR) data and machine learning
Louis de Montera, Henrick Berger, Romain Husson, Pascal Appelghem, Laurent Guerlou, and Mauricio Fragoso
Wind Energ. Sci., 7, 1441–1453,,, 2022
Short summary
Impact of the wind field at the complex-terrain site Perdigão on the surface pressure fluctuations of a wind turbine
Florian Wenz, Judith Langner, Thorsten Lutz, and Ewald Krämer
Wind Energ. Sci., 7, 1321–1340,,, 2022
Short summary

Cited articles

Alletto, M., Radi, A., Adib, J., Langner, J., Peralta, C., Altmikus, A., and Letzel, M.: E-Wind: Steady state CFD approach for stratified flows used for site assessment at Enercon, J. Phys.: Conf. Ser., 1037, 072020,, 2018. a
Bao, J., Chow, F. K., and Lundquist, K. A.: Large-Eddy Simulation over Complex Terrain Using an Improved Immersed Boundary Method in the Weather Research and Forecasting Model, Mon. Weather Rev., 146, 2781–2797,, 2018. a
Barber, S., Buehler, M., and Nordborg, H.: IEA Wind Task 31: Design of a new comparison metrics simulation challenge for wind resource assessment in complex terrain Stage 1, J. Phys.: Conf. Ser., 1618, 062013,, 2020a. a
Barber, S., Schubiger, A., Koller, S., Rumpf, A., Knaus, H., and Nordborg, H.: Actual Total Cost reduction of commercial CFD modelling tools for Wind Resource Assessment in complex terrain, J. Phys.: Conf. Ser., 1618, 062012,, 2020b. a, b, c, d
Barber, S., Schubiger, A., Koller, S., Eggli, D., Rumpf, A., and Knaus, H.: A new process for the pragmatic choice of wind models in complex terrain, final report, Eastern Switzerland University of Applied Sciences, (last access: 18 July 2022), 2021. a, b, c, d, e, f, g, h, i
Short summary
In this work, a range of simulations are carried out with seven different wind modelling tools at five different complex terrain sites and the results compared to wind speed measurements at validation locations. This is then extended to annual energy production (AEP) estimations (without wake effects), showing that wind profile prediction accuracy does not translate directly or linearly to AEP accuracy. It is therefore vital to consider overall AEP when evaluating simulation accuracies.