Articles | Volume 8, issue 2
Research article
09 Feb 2023
Research article |  | 09 Feb 2023

Evaluation of lidar-assisted wind turbine control under various turbulence characteristics

Feng Guo, David Schlipf, and Po Wen Cheng

Related authors

Assessing lidar-assisted feedforward and multivariable feedback controls for large floating wind turbines
Feng Guo and David Schlipf
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript under review for WES
Short summary
Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars
Yiyin Chen, Feng Guo, David Schlipf, and Po Wen Cheng
Wind Energ. Sci., 7, 539–558,,, 2022
Short summary

Related subject area

Thematic area: Dynamics and control | Topic: Wind turbine control
Prognostics-based adaptive control strategy for lifetime control of wind turbines
Edwin Kipchirchir, M. Hung Do, Jackson G. Njiri, and Dirk Söffker
Wind Energ. Sci., 8, 575–588,,, 2023
Short summary
Platform yaw drift in upwind floating wind turbines with single-point-mooring system and its mitigation by individual pitch control
Iñaki Sandua-Fernández, Felipe Vittori, Raquel Martín-San-Román, Irene Eguinoa, and José Azcona-Armendáriz
Wind Energ. Sci., 8, 277–288,,, 2023
Short summary
FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825,,, 2022
Short summary
Demonstration of a fault impact reduction control module for wind turbines
Benjamin Anderson and Edward Baring-Gould
Wind Energ. Sci., 7, 1753–1769,,, 2022
Short summary
Lidar-assisted model predictive control of wind turbine fatigue via online rainflow counting considering stress history
Stefan Loew and Carlo L. Bottasso
Wind Energ. Sci., 7, 1605–1625,,, 2022
Short summary

Cited articles

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind Energ. Sci., 7, 53–73,, 2022. a, b, c, d
Bossanyi, E. A., Kumar, A., and Hugues-Salas, O.: Wind turbine control applications of turbine-mounted LIDAR, J. Phys.-Conf. Ser., 555, 012011,, 2014. a
Chen, Y., Schlipf, D., and Cheng, P. W.: Parameterization of wind evolution using lidar, Wind Energ. Sci., 6, 61–91,, 2021. a, b, c
Chen, Y., Guo, F., Schlipf, D., and Cheng, P. W.: Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars, Wind Energ. Sci., 7, 539–558,, 2022. a, b, c, d, e, f, g
Chen, Z. and Stol, K.: An assessment of the effectiveness of individual pitch control on upscaled wind turbines, J. Phys.-Conf. Ser., 524, 012045,, 2014. a
Short summary
The benefits of lidar-assisted control are evaluated using both the Mann model and Kaimal model-based 4D turbulence, considering the variation of turbulence parameters. Simulations are performed for the above-rated mean wind speed, using the NREL 5.0 MW reference wind turbine and a four-beam lidar system. Using lidar-assisted control reduces the variations in rotor speed, pitch rate, tower base fore–aft bending moment, and electrical power significantly.