Articles | Volume 8, issue 12
https://doi.org/10.5194/wes-8-1909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-1909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects
Maarten J. van den Broek
CORRESPONDING AUTHOR
Delft Center for Systems and Control, TU Delft, Mekelweg 2, 2628CD Delft, the Netherlands
Delphine De Tavernier
Department of Flow Physics and Technology, Wind Energy, TU Delft, Kluyverweg 1, 2629HS Delft, the Netherlands
Paul Hulsman
ForWind – Institute of Physics, University of Oldenburg, Küpkersweg 70, 26129 Oldenburg, Germany
Daan van der Hoek
Delft Center for Systems and Control, TU Delft, Mekelweg 2, 2628CD Delft, the Netherlands
Benjamin Sanderse
Scientific Computing, CWI, P.O. Box 94079, 1090GB Amsterdam, the Netherlands
Jan-Willem van Wingerden
Delft Center for Systems and Control, TU Delft, Mekelweg 2, 2628CD Delft, the Netherlands
Related authors
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-125, https://doi.org/10.5194/wes-2025-125, 2025
Preprint under review for WES
Short summary
Short summary
Wind turbines are increasing in size, pushing blade tips to operate at high speed. This study employs URANS simulations to investigate the unsteady aerodynamic response of a wind turbine airfoil to angle-of-attack changes across the transonic flow threshold. By varying reduced frequency and inflow Mach number, the analysis reveals the impact of compressibility on aerodynamic performance, including a hysteresis effect, which highlights its importance for the design of next-generation rotors.
Simone Chellini, Delphine De Tavernier, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-121, https://doi.org/10.5194/wes-2025-121, 2025
Preprint under review for WES
Short summary
Short summary
Growing interest in high-velocity physics is justifying research in new experimental aerodynamics. Our work provides the knowledge foundations for the next generation of large wind turbine rotors. We highlight airfoil-dependent structures and forces found in a large-scale wind tunnel experiment, for which different trends are observed. Importantly, the results delve into the force enhancement due to dynamic angle of attack oscillation, leading to higher aerodynamic loads for the blade.
Guido Lazzerini, Jacob Deleuran Grunnet, Tobias Gybel Hovgaard, Fabio Caponetti, Vasu Datta Madireddi, Delphine De Tavernier, and Sebastiaan Paul Mulders
Wind Energ. Sci., 10, 1303–1327, https://doi.org/10.5194/wes-10-1303-2025, https://doi.org/10.5194/wes-10-1303-2025, 2025
Short summary
Short summary
Large wind turbines face design challenges due to increased flexibility of blades. Conventional control strategies fail under large deformations, impacting performance. We present a feedforward–feedback control scheme, addressing flexibility and overcoming the limitations of conventional strategies. By testing it on a large-scale reference turbine with realistic wind conditions, we demonstrated improvements to power by up to 5 % while constraining blade deflections.
Marcus Becker, Maxime Lejeune, Philippe Chatelain, Dries Allaerts, Rafael Mudafort, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 1055–1075, https://doi.org/10.5194/wes-10-1055-2025, https://doi.org/10.5194/wes-10-1055-2025, 2025
Short summary
Short summary
Established turbine wake models are steady-state. This paper presents an open-source dynamic wake modeling framework that complements established steady-state wake models with dynamics. It is advantageous over steady-state wake models to describe wind farm power and energy over shorter periods. The model enables researchers to investigate the effectiveness of wind farm flow control strategies. This leads to a better utilization of wind farms and allows them to be used to their fullest extent.
Amr Hegazy, Peter Naaijen, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-68, https://doi.org/10.5194/wes-2025-68, 2025
Preprint under review for WES
Short summary
Short summary
Floating wind turbines face stability issues when traditional onshore control methods are used, due to their motion at sea. This research reviews existing control strategies and introduces a new controller that improves stability without needing extra sensors. Simulations show it outperforms others in maintaining performance and reducing structural stress. The study highlights key trade-offs and the need for smarter, tailored control in offshore wind energy.
Abhyuday Aditya, Delphine De Tavernier, Ferdinand Schrijer, Bas van Oudheusden, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-65, https://doi.org/10.5194/wes-2025-65, 2025
Preprint under review for WES
Short summary
Short summary
This study is the first to experimentally test how wind turbine blades behave at near-supersonic speeds, a condition expected in the largest turbines. In the experiments, we observed unstable and potentially detrimental shock waves that become stronger at higher speeds and angles. Basic prediction tools in wind turbine design miss these details, highlighting the need for better tools and experiments to understand the extreme conditions faced by modern wind turbines.
Aemilius Adrianus Wilhelmus van Vondelen, Marion Coquelet, Sachin Tejwant Navalkar, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-51, https://doi.org/10.5194/wes-2025-51, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wind farms suffer energy losses due to wake effects between turbines. We present a new control strategy that synchronizes turbine wakes to enhance power output. By estimating and aligning the phase shifts of periodic wake structures using an advanced filtering method, downstream turbines recover more energy. Simulations show up to 10 % increased power at the third turbine. These results offer a promising path to improving wind farm efficiency while mixing wakes.
Adhyanth Giri Ajay, David Bensason, and Delphine De Tavernier
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-54, https://doi.org/10.5194/wes-2025-54, 2025
Revised manuscript accepted for WES
Short summary
Short summary
We studied the airflow around a new type of wind turbine called the X-Rotor, which could help reduce the cost of offshore wind energy. Comparing a computer simulation model and wind tunnel experiments, we found that the model correlates well under normal conditions but becomes less accurate when the blades turn. Our results show that future designs of this turbine category must consider complex three-dimensional flow effects to better predict and improve wind turbine performance.
Unai Gutierrez Santiago, Aemilius A. W. van Vondelen, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 10, 207–225, https://doi.org/10.5194/wes-10-207-2025, https://doi.org/10.5194/wes-10-207-2025, 2025
Short summary
Short summary
Knowing the loads applied to wind turbine gearboxes throughout their service life is becoming increasingly important as maintaining reliability with higher torque density demands is proving to be challenging. Operational deflection shapes identified from fiber-optic strain measurements have enabled the estimation of input torque, improving the assessment of the consumed life. Tracking operational deflection shapes recursively over time can potentially be used as an indicator of fault detection.
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci., 10, 103–116, https://doi.org/10.5194/wes-10-103-2025, https://doi.org/10.5194/wes-10-103-2025, 2025
Short summary
Short summary
Next-generation wind turbines are the largest rotating machines ever built, experiencing local flow Mach where the incompressibility assumption is violated, and even transonic flow can occur. This study assesses the transonic features over the FFA-W3-211 wind turbine tip airfoil for selected industrial test cases, defines the subsonic–supersonic flow threshold and evaluates the Reynolds number effects on transonic flow occurrence. Shock wave occurrence is also depicted.
Manuel Alejandro Zúñiga Inestroza, Paul Hulsman, Vlaho Petrović, and Martin Kühn
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-171, https://doi.org/10.5194/wes-2024-171, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wake effects cause power losses that degrade wind farm efficiency. This paper presents a wind tunnel investigation of dynamic induction control (DIC), a strategy to mitigate wake losses by improving turbine-flow interactions. WindScanner lidar measurements are used to explore the wake development of model turbines in response to DIC. Our results demonstrate consistent benefits and adaptability under realistic inflow conditions, highlighting DIC’s potential to increase wind farm power production.
Claudia Muscari, Paolo Schito, Axelle Viré, Alberto Zasso, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-149, https://doi.org/10.5194/wes-2024-149, 2025
Publication in WES not foreseen
Short summary
Short summary
This paper presents the findings of a study aimed at describing the flow system downstream of a wind turbine operated with a novel control technology. Results from heavy high-fidelity simulations are used to obtain a low-fidelity model that is quick enough to be used for the optimization of such technologies. Additionally, we were able to retrieve an improved understanding of the physics of such systems under different inflow conditions.
Majid Bastankhah, Marcus Becker, Matthew Churchfield, Caroline Draxl, Jay Prakash Goit, Mehtab Khan, Luis A. Martinez Tossas, Johan Meyers, Patrick Moriarty, Wim Munters, Asim Önder, Sara Porchetta, Eliot Quon, Ishaan Sood, Nicole van Lipzig, Jan-Willem van Wingerden, Paul Veers, and Simon Watson
Wind Energ. Sci., 9, 2171–2174, https://doi.org/10.5194/wes-9-2171-2024, https://doi.org/10.5194/wes-9-2171-2024, 2024
Short summary
Short summary
Dries Allaerts was born on 19 May 1989 and passed away at his home in Wezemaal, Belgium, on 10 October 2024 after battling cancer. Dries started his wind energy career in 2012 and had a profound impact afterward on the community, in terms of both his scientific realizations and his many friendships and collaborations in the field. His scientific acumen, open spirit of collaboration, positive attitude towards life, and playful and often cheeky sense of humor will be deeply missed by many.
Matteo Baricchio, Pieter M. O. Gebraad, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 2113–2132, https://doi.org/10.5194/wes-9-2113-2024, https://doi.org/10.5194/wes-9-2113-2024, 2024
Short summary
Short summary
Wake steering can be integrated into wind farm layout optimization through a co-design approach. This study estimates the potential of this method for a wide range of realistic conditions, adopting a tailored genetic algorithm and novel geometric yaw relations. A gain in the annual energy yield between 0.3 % and 0.4 % is obtained for a 16-tubrine farm, and a multi-objective implementation is used to limit loss in the case that wake steering is not used during farm operation.
Shyam VimalKumar, Delphine De Tavernier, Dominic von Terzi, Marco Belloli, and Axelle Viré
Wind Energ. Sci., 9, 1967–1983, https://doi.org/10.5194/wes-9-1967-2024, https://doi.org/10.5194/wes-9-1967-2024, 2024
Short summary
Short summary
When standing still without a nacelle or blades, the vibrations on a wind turbine tower are of concern to its structural health. This study finds that the air which flows around the tower recirculates behind the tower, forming so-called wakes. These wakes initiate the vibration, and the movement itself causes the vibration to increase or decrease depending on the wind speed. The current study uses a methodology called force partitioning to analyse this in depth.
Marion Coquelet, Maxime Lejeune, Laurent Bricteux, Aemilius A. W. van Vondelen, Jan-Willem van Wingerden, and Philippe Chatelain
Wind Energ. Sci., 9, 1923–1940, https://doi.org/10.5194/wes-9-1923-2024, https://doi.org/10.5194/wes-9-1923-2024, 2024
Short summary
Short summary
An extended Kalman filter is used to estimate the wind impinging on a wind turbine based on the blade bending moments and a turbine model. Using large-eddy simulations, this paper verifies how robust the estimator is to the turbine control strategy as it impacts loads and operating parameters. It is shown that including dynamics in the turbine model to account for delays between actuation and bending moments is needed to maintain the accuracy of the estimator when dynamic pitch control is used.
Amr Hegazy, Peter Naaijen, Vincent Leroy, Félicien Bonnefoy, Mohammad Rasool Mojallizadeh, Yves Pérignon, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 1669–1688, https://doi.org/10.5194/wes-9-1669-2024, https://doi.org/10.5194/wes-9-1669-2024, 2024
Short summary
Short summary
Successful wave tank experiments were conducted to evaluate the feedforward (FF) control strategy benefits in terms of structural loads and power quality of floating wind turbine components. The wave FF control strategy is effective when it comes to alleviating the effects of the wave forces on the floating offshore wind turbines, whereas wave FF control requires a significant amount of actuation to minimize the platform pitch motion, which makes such technology unfavorable for that objective.
Anantha Padmanabhan Kidambi Sekar, Paul Hulsman, Marijn Floris van Dooren, and Martin Kühn
Wind Energ. Sci., 9, 1483–1505, https://doi.org/10.5194/wes-9-1483-2024, https://doi.org/10.5194/wes-9-1483-2024, 2024
Short summary
Short summary
We present induction zone measurements conducted with two synchronised lidars at a two-turbine wind farm. The induction zone flow was characterised for free, fully waked and partially waked flows. Due to the short turbine spacing, the lidars captured the interaction of the atmospheric boundary layer, induction zone and wake, evidenced by induction asymmetry and induction zone–wake interactions. The measurements will aid the process of further improving existing inflow and wake models.
Maarten J. van den Broek, Marcus Becker, Benjamin Sanderse, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 721–740, https://doi.org/10.5194/wes-9-721-2024, https://doi.org/10.5194/wes-9-721-2024, 2024
Short summary
Short summary
Wind turbine wakes negatively affect wind farm performance as they impinge on downstream rotors. Wake steering reduces these losses by redirecting wakes using yaw misalignment of the upstream rotor. We develop a novel control strategy based on model predictions to implement wake steering under time-varying conditions. The controller is tested in a high-fidelity simulation environment and improves wind farm power output compared to a state-of-the-art reference controller.
Livia Brandetti, Sebastiaan Paul Mulders, Roberto Merino-Martinez, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 9, 471–493, https://doi.org/10.5194/wes-9-471-2024, https://doi.org/10.5194/wes-9-471-2024, 2024
Short summary
Short summary
This research presents a multi-objective optimisation approach to balance vertical-axis wind turbine (VAWT) performance and noise, comparing the combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking controller with a baseline. Psychoacoustic annoyance is used as a novel metric for human perception of wind turbine noise. Results showcase the WSE–TSR tracking controller’s potential in trading off the considered objectives, thereby fostering the deployment of VAWTs in urban areas.
Andreas Rott, Leo Höning, Paul Hulsman, Laura J. Lukassen, Christof Moldenhauer, and Martin Kühn
Wind Energ. Sci., 8, 1755–1770, https://doi.org/10.5194/wes-8-1755-2023, https://doi.org/10.5194/wes-8-1755-2023, 2023
Short summary
Short summary
This study examines wind vane measurements of commercial wind turbines and their impact on yaw control. The authors discovered that rotor interference can cause an overestimation of wind vane measurements, leading to overcorrection of the yaw controller. A correction function that improves the yaw behaviour is presented and validated in free-field experiments on a commercial wind turbine. This work provides new insights into wind direction measurements and suggests ways to optimize yaw control.
Livia Brandetti, Sebastiaan Paul Mulders, Yichao Liu, Simon Watson, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 1553–1573, https://doi.org/10.5194/wes-8-1553-2023, https://doi.org/10.5194/wes-8-1553-2023, 2023
Short summary
Short summary
This research presents the additional benefits of applying an advanced combined wind speed estimator and tip-speed ratio tracking (WSE–TSR) controller compared to the baseline Kω2. Using a frequency-domain framework and an optimal calibration procedure, the WSE–TSR tracking control scheme shows a more flexible trade-off between conflicting objectives: power maximisation and load minimisation. Therefore, implementing this controller on large-scale wind turbines will facilitate their operation.
Daniel van den Berg, Delphine de Tavernier, and Jan-Willem van Wingerden
Wind Energ. Sci., 8, 849–864, https://doi.org/10.5194/wes-8-849-2023, https://doi.org/10.5194/wes-8-849-2023, 2023
Short summary
Short summary
Wind turbines placed in farms interact with their wake, lowering the power production of the wind farm. This can be mitigated using so-called wake mixing techniques. This work investigates the coupling between the pulse wake mixing technique and the motion of floating wind turbines using the pulse. Frequency response experiments and time domain simulations show that extra movement is undesired and that the
optimalexcitation frequency is heavily platform dependent.
Balthazar Arnoldus Maria Sengers, Gerald Steinfeld, Paul Hulsman, and Martin Kühn
Wind Energ. Sci., 8, 747–770, https://doi.org/10.5194/wes-8-747-2023, https://doi.org/10.5194/wes-8-747-2023, 2023
Short summary
Short summary
The optimal misalignment angles for wake steering are determined using wake models. Although mostly analytical, data-driven models have recently shown promising results. This study validates a previously proposed data-driven model with results from a field experiment using lidar measurements. In a comparison with a state-of-the-art analytical model, it shows systematically more accurate estimates of the available power. Also when using only commonly available input data, it gives good results.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Marcus Becker, Bastian Ritter, Bart Doekemeijer, Daan van der Hoek, Ulrich Konigorski, Dries Allaerts, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, https://doi.org/10.5194/wes-7-2163-2022, 2022
Short summary
Short summary
In this paper we present a revised dynamic control-oriented wind farm model. The model can simulate turbine wake behaviour in heterogeneous and changing wind conditions at a very low computational cost. It utilizes a three-dimensional turbine wake model which also allows capturing vertical wind speed differences. The model could be used to maximise the power generation of with farms, even during events like a wind direction change. It is publicly available and open for further development.
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022, https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Short summary
The FarmConners benchmark is the first of its kind to bring a wide variety of data sets, control settings, and model complexities for the (initial) assessment of wind farm flow control benefits. Here we present the first part of the benchmark results for three blind tests with large-scale rotors and 11 participating models in total, via direct power comparisons at the turbines as well as the observed or estimated power gain at the wind farm level under wake steering control strategy.
Daan van der Hoek, Joeri Frederik, Ming Huang, Fulvio Scarano, Carlos Simao Ferreira, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 1305–1320, https://doi.org/10.5194/wes-7-1305-2022, https://doi.org/10.5194/wes-7-1305-2022, 2022
Short summary
Short summary
The paper presents a wind tunnel experiment where dynamic induction control was implemented on a small-scale turbine. By periodically changing the pitch angle of the blades, the low-velocity turbine wake is perturbed, and hence it recovers at a faster rate. Small particles were released in the flow and subsequently recorded with a set of high-speed cameras. This allowed us to reconstruct the flow behind the turbine and investigate the effect of dynamic induction control on the wake.
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022, https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Short summary
An accurate prediction of loads and power of an offshore wind turbine is needed for an optimal design. However, such predictions are typically performed with engineering models that contain many inaccuracies and uncertainties. In this paper we have proposed a systematic approach to quantify and calibrate these uncertainties based on two experimental datasets. The calibrated models are much closer to the experimental data and are equipped with an estimate of the uncertainty in the predictions.
Yichao Liu, Riccardo Ferrari, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 523–537, https://doi.org/10.5194/wes-7-523-2022, https://doi.org/10.5194/wes-7-523-2022, 2022
Short summary
Short summary
The objective of the paper is to develop a data-driven output-constrained individual pitch control approach, which will not only mitigate the blade loads but also reduce the pitch activities. This is achieved by only reducing the blade loads violating a user-defined bound, which leads to an economically viable load control strategy. The proposed control strategy shows promising results of load reduction in the wake-rotor overlapping and turbulent sheared wind conditions.
Unai Gutierrez Santiago, Alfredo Fernández Sisón, Henk Polinder, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 505–521, https://doi.org/10.5194/wes-7-505-2022, https://doi.org/10.5194/wes-7-505-2022, 2022
Short summary
Short summary
The gearbox is one of the main contributors to the overall cost of wind energy, and it is acknowledged that we still do not fully understand its loading. The study presented in this paper develops a new alternative method to measure input rotor torque in wind turbine gearboxes, overcoming the drawbacks related to measuring on a rotating shaft. The method presented in this paper could make measuring gearbox torque more cost-effective, which would facilitate its adoption in serial wind turbines.
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022, https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
Short summary
The damping of an offshore wind turbine is a difficult physical quantity to predict, although it plays a major role in a cost-effective turbine design. This paper presents a review of all approaches that can be used for damping estimation directly from operational wind turbine data. As each use case is different, a novel suitability table is presented to enable the user to choose the most appropriate approach for the given availability and characteristics of measurement data.
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021, https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Short summary
Floating wind is a key technology to harvest the abundant wind energy resource of deep waters. This research introduces a new way of controlling the wind turbine to better deal with the action of waves. The turbine is made aware of the incoming waves, and the information is exploited to enhance power production.
Bart M. Doekemeijer, Stefan Kern, Sivateja Maturu, Stoyan Kanev, Bastian Salbert, Johannes Schreiber, Filippo Campagnolo, Carlo L. Bottasso, Simone Schuler, Friedrich Wilts, Thomas Neumann, Giancarlo Potenza, Fabio Calabretta, Federico Fioretti, and Jan-Willem van Wingerden
Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, https://doi.org/10.5194/wes-6-159-2021, 2021
Short summary
Short summary
This article presents the results of a field experiment investigating wake steering on an onshore wind farm. The measurements show that wake steering leads to increases in power production of up to 35 % for two-turbine interactions and up to 16 % for three-turbine interactions. However, losses in power production are seen for various regions of wind directions. The results suggest that further research is necessary before wake steering will consistently lead to energy gains in wind farms.
Cited articles
Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a
Becker, M., Ritter, B., Doekemeijer, B., van der Hoek, D., Konigorski, U., Allaerts, D., and van Wingerden, J.-W.: The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian wake, Wind Energ. Sci., 7, 2163–2179, https://doi.org/10.5194/wes-7-2163-2022, 2022. a
Bhagwat, M. J. and Leishman, J. G.: Transient rotor inflow using a time-accurate free-vortex wake model, in: 39th Aerosp. Sci. Meet. Exhib., p. 993, https://doi.org/10.2514/6.2001-993, 2001. a
Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., and van Wingerden, J.-W.: A control-oriented dynamic wind farm model: WFSim, Wind Energ. Sci., 3, 75–95, https://doi.org/10.5194/wes-3-75-2018, 2018. a
Branlard, E., Martínez-Tossas, L. A., and Jonkman, J.: A time-varying formulation of the curled wake model within the FAST.Farm framework, Wind Energy, 26, 44–63, https://doi.org/10.1002/we.2785, 2023. a
Brown, K., Houck, D., Maniaci, D., and Westergaard, C.: Rapidly recovering wind turbine wakes with dynamic pitch and rotor speed control, in: AIAA Scitech 2021 Forum, p. 1182, ISBN 9781624106095, https://doi.org/10.2514/6.2021-1182, 2021. a
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Wind Energy Handbook, Wiley, ISBN 0471489972, 2001. a
de Vaal, J. B., Hansen, M. O., and Moan, T.: Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines, J. Phys. Conf. Ser., 555, 012025, https://doi.org/10.1088/1742-6596/555/1/012025, 2014. a
Doekemeijer, B. M., Kern, S., Maturu, S., Kanev, S., Salbert, B., Schreiber, J., Campagnolo, F., Bottasso, C. L., Schuler, S., Wilts, F., Neumann, T., Potenza, G., Calabretta, F., Fioretti, F., and van Wingerden, J.-W.: Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy, Wind Energ. Sci., 6, 159–176, https://doi.org/10.5194/wes-6-159-2021, 2021. a
Dong, J., Viré, A., Ferreira, C. S., Li, Z., and van Bussel, G.: A modified free wake vortex ring method for horizontal-axis wind turbines, Energies, 12, 3900, https://doi.org/10.3390/en12203900, 2019. a
Fleming, P., Annoni, J., Martínez-Tossas, L. A., Raach, S., Gruchalla, K., Scholbrock, A., Churchfield, M., and Roadman, J.: Investigation into the shape of a wake of a yawed full-scale turbine, J. Phys. Conf. Ser., 1037, 032010, https://doi.org/10.1088/1742-6596/1037/3/032010, 2018. a
Fleming, P., King, J., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Jager, D., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2, Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, 2020. a
Fleming, P., Sinner, M., Young, T., Lannic, M., King, J., Simley, E., and Doekemeijer, B.: Experimental results of wake steering using fixed angles, Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, 2021. a
Houck, D. R., DeVelder, N., and Kelley, C. L.: Comparison of a mid-fidelity free vortex wake method to a high-fidelity actuator line model large eddy simulation for wind turbine wake simulations, J. Phys. Conf. Ser., 2265, 042044, https://doi.org/10.1088/1742-6596/2265/4/042044, 2022. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and Meneveau, C.: Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions, J. Renew. Sustain. Ener., 8, 043301, https://doi.org/10.1063/1.4955091, 2016. a
Howland, M. F., Lele, S. K., and Dabiri, J. O.: Wind farm power optimization through wake steering, P. Natl. Acad. Sci. USA, 116, 14495–14500, https://doi.org/10.1073/pnas.1903680116, 2019. a
Hulsman, P., Wosnik, M., Petrović, V., Hölling, M., and Kühn, M.: Data Supplement for “Curled Wake Development of a Yawed Wind Turbine at Turbulent and Sheared Inflow” – Wind Energy Science Journal, Zenodo [data set], https://doi.org/10.5281/zenodo.5734877, 2021. a
Hulsman, P., Sucameli, C., Petrović, V., Rott, A., Gerds, A., and Kühn, M.: Turbine power loss during yaw-misaligned free field tests at different atmospheric conditions, J. Phys. Conf. Ser., 2265, 032074, https://doi.org/10.1088/1742-6596/2265/3/032074, 2022a. a
Hulsman, P., Wosnik, M., Petrović, V., Hölling, M., and Kühn, M.: Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow, Wind Energ. Sci., 7, 237–257, https://doi.org/10.5194/wes-7-237-2022, 2022b. a, b, c, d
Janssens, N. and Meyers, J.: Towards real-time optimal control of wind farms using large-eddysimulations, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2023-84, in review, 2023. a
Jeon, M., Lee, S., Kim, T., and Lee, S.: Wake influence on dynamic load characteristics of offshore floating wind turbines, AIAA J., 54, 3535–3545, https://doi.org/10.2514/1.J054584, 2016. a
Lee, H. and Lee, D. J.: Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine, Renew. Energ., 143, 9–23, https://doi.org/10.1016/j.renene.2019.04.134, 2019. a
Leishman, J. G.: Challenges in modeling the unsteady aerodynamics of wind turbines, Wind Energy, 5, 85–132, https://doi.org/10.1002/we.62, 2002. a
Lejeune, M., Moens, M., and Chatelain, P.: A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction, Front. Energy Res., 10, 884068, https://doi.org/10.3389/fenrg.2022.884068, 2022. a
Lin, M. and Porté-Agel, F.: Large-eddy simulation of a wind-turbine array subjected to active yaw control, Wind Energ. Sci., 7, 2215–2230, https://doi.org/10.5194/wes-7-2215-2022, 2022. a
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A., and Churchfield, M. J.: The aerodynamics of the curled wake: a simplified model in view of flow control, Wind Energ. Sci., 4, 127–138, https://doi.org/10.5194/wes-4-127-2019, 2019. a, b
Meyers, J., Bottasso, C., Dykes, K., Fleming, P., Gebraad, P., Giebel, G., Göçmen, T., and van Wingerden, J.-W.: Wind farm flow control: prospects and challenges, Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, 2022. a
Munters, W. and Meyers, J.: Optimal dynamic induction and yaw control of wind farms: Effects of turbine spacing and layout, J. Phys. Conf. Ser., 1037, 032015, https://doi.org/10.1088/1742-6596/1037/3/032015, 2018. a
NREL: FLORIS. Version 3.0, https://github.com/NREL/floris (last access: 4 November 2023), 2022. a
Petrović, V., Schottler, J., Neunaber, I., Hölling, M., and Kühn, M.: Wind tunnel validation of a closed loop active power control for wind farms, J. Phys. Conf. Ser., 1037, 032020, https://doi.org/10.1088/1742-6596/1037/3/032020, 2018. a
Schottler, J., Hölling, A., Peinke, J., and Hölling, M.: Wind tunnel tests on controllable model wind turbines in yaw, in: 34th Wind Energy Symp., AIAA, ISBN 9781624103957, https://doi.org/10.2514/6.2016-1523, 2016. a
Schottler, J., Bartl, J., Mühle, F., Sætran, L., Peinke, J., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width, Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018, 2018. a
Sebastian, T. and Lackner, M.: Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine, Energies, 5, 968–1000, https://doi.org/10.3390/en5040968, 2012. a
Simley, E., Fleming, P., Girard, N., Alloin, L., Godefroy, E., and Duc, T.: Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance, Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021, 2021. a
Simoes, F. J. and Graham, J. M.: Application of a free vortex wake model to a horizontal axis wind turbine, J. Wind Eng. Ind. Aerod., 39, 129–138, https://doi.org/10.1016/0167-6105(92)90539-M, 1992. a
Squire, H. B.: The Growth of a Vortex in Turbulent Flow, Aeronaut. Quart., 16, 302–306, https://doi.org/10.1017/s0001925900003516, 1965. a
van den Broek, M. J.: Simulation data and code underlying the publication: Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects, 4TU.ResearchData [data set and code], https://doi.org/10.4121/e32a9868-c5ea-43d3-8969-b1908662b2b2, 2023. a
van den Broek, M. J. and van Wingerden, J. W.: Dynamic Flow Modelling for Model-Predictive Wind Farm Control, J. Phys. Conf. Ser., 1618, 022023, https://doi.org/10.1088/1742-6596/1618/2/022023, 2020. a
van den Broek, M. J., De Tavernier, D., Sanderse, B., and van Wingerden, J. W.: Adjoint optimisation for wind farm flow control with a free-vortex wake model, Renew. Energ., 201, 752–765, https://doi.org/10.1016/j.renene.2022.10.120, 2022a. a, b, c
van den Broek, M. J., Sanderse, B., and van Wingerden, J. W.: Flow Modelling for Wind Farm Control: 2D vs. 3D, J. Phys. Conf. Ser., 2265, 032086, https://doi.org/10.1088/1742-6596/2265/3/032086, 2022b. a
van den Broek, M. J., van den Berg, D., Sanderse, B., and van Wingerden, J. W.: Optimal Control for Wind Turbine Wake Mixing on Floating Platforms, IFAC-PapersOnLine, 56, 7656–7661, https://doi.org/10.1016/j.ifacol.2023.10.1165, 2023. a
van der Hoek, D., van den Broek, M. J., and van Wingerden, J. W.: Data underlying the publication: Free-vortex models for wind turbine wakes under yaw misalignment – a validation study on far-wake effects, 4TU.ResearchData [data set], https://doi.org/10.4121/70ae7f4c-f87f-45f1-8360-f4958a60249f.v1, 2023b. a
van Kuik, G. A. M.: The Fluid Dynamic Basis for Actuator Disc and Rotor Theories, ISBN 9781614998662, https://doi.org/10.3233/978-1-61499-866-2-i, 2018. a, b, c
van Wingerden, J. W., Fleming, P. A., Göcmen, T., Eguinoa, I., Doekemeijer, B. M., Dykes, K., Lawson, M., Simley, E., King, J., Astrain, D., Iribas, M., Bottasso, C. L., Meyers, J., Raach, S., Kölle, K., and Giebel, G.: Expert Elicitation on Wind Farm Control, J. Phys. Conf. Ser., 1618, 022025, https://doi.org/10.1088/1742-6596/1618/2/022025, 2020. a
Short summary
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three different models to predict the effects of these wakes on downstream wind turbines. The models are validated with experimental data from wind tunnel studies for steady and time-varying conditions. We demonstrate that the models are suitable for optimally controlling wind turbines to improve power production in large wind farms.
As wind turbines produce power, they leave behind wakes of slow-moving air. We analyse three...
Altmetrics
Final-revised paper
Preprint