Articles | Volume 5, issue 1
https://doi.org/10.5194/wes-5-141-2020
https://doi.org/10.5194/wes-5-141-2020
Research article
 | 
28 Jan 2020
Research article |  | 28 Jan 2020

Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluid–structure interaction simulation

Yasir Shkara, Martin Cardaun, Ralf Schelenz, and Georg Jacobs

Related authors

Optimal position and distribution mode for on-site hydrogen electrolyzers in onshore wind farms for a minimal levelized cost of hydrogen (LCoH)
Thorsten Reichartz, Georg Jacobs, Tom Rathmes, Lucas Blickwedel, and Ralf Schelenz
Wind Energ. Sci., 9, 281–295, https://doi.org/10.5194/wes-9-281-2024,https://doi.org/10.5194/wes-9-281-2024, 2024
Short summary
Regression-based Main Bearing Load Estimation
Amin Loriemi, Georg Jacobs, Vitali Züch, Timm Jakobs, and Dennis Bosse
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-75,https://doi.org/10.5194/wes-2022-75, 2023
Preprint withdrawn
Short summary
Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci., 7, 387–411, https://doi.org/10.5194/wes-7-387-2022,https://doi.org/10.5194/wes-7-387-2022, 2022
Short summary
Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase
Freia Harzendorf, Ralf Schelenz, and Georg Jacobs
Wind Energ. Sci., 6, 571–584, https://doi.org/10.5194/wes-6-571-2021,https://doi.org/10.5194/wes-6-571-2021, 2021
Short summary
Method for airborne measurement of the spatial wind speed distribution above complex terrain
Christian Ingenhorst, Georg Jacobs, Laura Stößel, Ralf Schelenz, and Björn Juretzki
Wind Energ. Sci., 6, 427–440, https://doi.org/10.5194/wes-6-427-2021,https://doi.org/10.5194/wes-6-427-2021, 2021
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Ahlstrom, A.: Influence of wind turbine flexibility on loads and power production, Wind Energy, 9, 237–249, https://doi.org/10.1002/we.167, 2006. 
ANSYS Inc.: available at: http://www.ansys.com (last access: 5 September 2019), Release 19.1, 2018. 
Becker, M.: fastFoam an aero-servo-elastic wind turbine simulation method based on CFD, MS thesis, Delft University of Technology, 2017. 
Bertagnolio, F., Gaunaa, M., Hansen, M., Sorensen, N., and Rasmussen, F.: Computation of aerodynamic damping for wind turbine applications, 4th GRACM Congress on Computational Mechanics, 2002. 
Branner, K., Blasques, J. P., Kim, T., Fedorov, V. A., Berring, P., Bitsche, R. D., and Berggreen, C.: Anisotropic beam model for analysis and design of passive controlled wind turbine blades, DTU Wind Energy report E-0001 (EN), DTU Wind Energy, ISBN 978-87-92896-01-8, 2012. 
Download
Short summary
A computational fluid dynamics (CFD) solver is coupled with a structure solver to predict the dynamic response of a horizontal axis wind turbine structure. CFD provides much more accurate and more realistic aerodynamic loads that cannot be achieved by traditional methods such as blade element momentum theory. As a result, the aeroelastic response of the wind turbine structure, taking into account blade–tower interactions, is described in more detail.
Altmetrics
Final-revised paper
Preprint