Articles | Volume 5, issue 4
https://doi.org/10.5194/wes-5-1601-2020
https://doi.org/10.5194/wes-5-1601-2020
Research article
 | 
19 Nov 2020
Research article |  | 19 Nov 2020

Optimal tuning of engineering wake models through lidar measurements

Lu Zhan, Stefano Letizia, and Giacomo Valerio Iungo

Related authors

LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 1: Theoretical framework
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2065–2093, https://doi.org/10.5194/amt-14-2065-2021,https://doi.org/10.5194/amt-14-2065-2021, 2021
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 2: Applications to lidar measurements of wind turbine wakes
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021,https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary

Cited articles

Abkar, M., Sørensen, J. N., and Porté-Agel, F.: An analytical model for the effect of vertical wind veer on wind turbine wakes, Energies, 11, 1838, https://doi.org/10.3390/en11071838, 2018. a
Acker, T. and Chime, A. H.: Wind modeling using WindPro and WAsP software, Norther Arizon University, USA, available at: https://docuri.com/download/wind-modeling-using-windpro-and-wasp-software_59c1d09ff581710b28646f50_pdf (last access: 11 June 2020), 2011. a
Ainslie, J. F.: Calculating the flow field in the wake of wind turbines, J. Wind Eng. Indust. Aerodyn., 27, 213-224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a, b, c, d, e
Annoni, J., Gebraad, P. M., Scholbrock, A. K., Fleming, P. A., and Wingerden, J. W.: Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model, Wind Energy, 19, 1135-1150, https://doi.org/10.1002/we.1891, 2016. a
Archer, C. L., Vasel-Be-Hagh, A., Yan, C., Wu, S., Pan, Y., Brodie, J. F., and Maguire, A. E.: Review and evaluation of wake loss models for wind energy applications, Appl. Energy, 226, 1187–1207, https://doi.org/10.1016/j.apenergy.2018.05.085, 2018. a
Download
Short summary
Lidar measurements of wakes generated by isolated wind turbines are leveraged for optimal tuning of parameters of four engineering wake models. The lidar measurements are retrieved as ensemble averages of clustered data with incoming wind speed and turbulence intensity. It is shown that the optimally tuned wake models enable a significantly increased accuracy for predictions of wakes. The optimally tuned models are expected to enable generally enhanced performance for wind farms on flat terrain.
Share
Altmetrics
Final-revised paper
Preprint