Keck, R.-E.: A consistent turbulence formulation for the dynamic wake
meandering model in the atmospheric boundary layer, PhD thesis, Technical
University of Denmark, Lyngby, Denmark, 2013.
a,
b,
c,
d,
e,
f,
g,
h,
i
Keck, R.-E., de Maré, M., Churchfield, M. J., Lee, S., Larsen, G., and
Madsen, H. A.: On atmospheric stability in the dynamic wake meandering model, Wind Energy, 17, 1689–1710, 2014. a
Larsen, G. C., Madsen, H. A., Bingöl, F., Mann, J., Ott, S. R., Sørensen,
J. N., Okulov, V., Troldborg, N., Nielsen, M., Thomsen, K., Larsen, T. J.,
and Mikkelsen, R.: Dynamic wake meandering modeling, Tech. Rep.
Risø-R-1607(EN), Risø National Laboratory, Roskilde, Denmark, 2007.
a,
b,
c
Larsen, G. C., Madsen, H. A., Larsen, T. J., and Troldborg, N.: Wake modeling
and simulation, Tech. Rep. Risø-R-1653(EN), Risø National Laboratory
for Sustainable Energy, Roskilde, Denmark, 2008a. a
Larsen, G. C., Madsen, H. A., Thomsen, K., and Larsen, T. J.: Wake meandering:
A pragmatic approach, Wind Energy, 11, 377–395,
https://doi.org/10.1002/we.267,
2008b.
a,
b
Larsen, T. J., Madsen, H. A., Larsen, G. C., and Hansen, K. S.: Validation of
the dynamic wake meander model for loads and power production in the Egmond
aan Zee wind farm, Wind Energy, 16, 605–624, 2013.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Machefaux, E., Troldborg, N., Larsen, G., Mann, J., and Aagaard Madsen, H.:
Experimental and numerical study of wake to wake interaction in wind farms,
in: Proceedings of EWEA 2012 – European Wind Energy Conference & Exhibition,
European Wind Energy Association (EWEA), 16–19 April 2012, Copenhagen, Denmark, 2012. a
Machefaux, E., Larsen, G. C., Troldborg, N., and Rettenmeier, A.: Single wake
meandering, advection and expansion – An analysis using an adapted pulsed
lidar and CFD LES-ACL simulations, in: Prodeedings of EWEA 2013-0 European
Wind Energy Conference & Exhibition, European Wind Energy Association
(EWEA), 4–7 February 2013, Vienna, Austria, 2013. a
Machefaux, E., Larsen, G. C., Troldborg, N., Gaunaa, M., and Rettenmeier, A.:
Empirical modeling of single-wake advection and expansion using full-scale
pulsed lidar-based measurements, Wind Energy, 18, 2085–2103,
https://doi.org/10.1002/we.1805, 2015.
a
Machefaux, E., Larsen, G. C., Troldborg, N., Hansen, K. S., Angelou, N.,
Mikkelsen, T., and Mann, J.: Investigation of wake interaction using
full-scale lidar measurements and large eddy simulation, Wind Energy, 19,
1535–1551,
https://doi.org/10.1002/we.1936, 2016.
a
Madsen, H. A., Larsen, G. C., Larsen, T. J., Troldborg, N., and Mikkelsen, R.: Calibration
and validation of the dynamic wake meandering model for implementation in an
aeroelastic code, J. Sol. Energy Eng., 132, 041014,
https://doi.org/10.1115/1.4002555, 2010.
a,
b,
c,
d,
e,
f,
g
Reinwardt, I., Gerke, N., Dalhoff, P., Steudel, D., and Moser, W.: Validation
of wind turbine wake models with focus on the dynamic wake meandering model, J. Phys. Conf. Ser., 1037, 072028,
https://doi.org/10.1088/1742-6596/1037/7/072028, 2018.
a,
b,
c,
d,
e
Trujillo, J.-J., Bingöl, F., Larsen, G. C., Mann, J., and Kühn, M.: Light
detection and ranging measurements of wake dynamics. Part II:
Two-dimensional scanning, Wind Energy, 14, 61–75,
https://doi.org/10.1002/we.402,
2011.
a,
b,
c
Veers, P. S.: Three-Dimensional Wind Simulation, Tech. Rep. SAND88-0152(EN), Sandia National Laboratories, New Mexico, USA, 1988. a