Articles | Volume 6, issue 5
https://doi.org/10.5194/wes-6-1291-2021
https://doi.org/10.5194/wes-6-1291-2021
Research article
 | 
06 Oct 2021
Research article |  | 06 Oct 2021

Design procedures and experimental verification of an electro-thermal deicing system for wind turbines

David Getz and Jose Palacios

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Ackerman, T. and and Söder, L.: An overview of wind energy status, Renewable and sustainable Energy Reviews, 6, 67–127, https://doi.org/10.1016/S1364-0321(02)00008-4, 2002. 
Anderson, D. N.: Rime, Mixed and Glaze-Ice Evaluations of Three Scaling Laws, NASA Lewis Research Center, https://doi.org/10.2514/6.1994-718, 10 January 1994. 
Blasco, P., Palacios, J., and Schmitz, S.: Effect of Icing Roughness on Wind Turbine Power Production, Wind Energy Journal, 20, 601–617, https://doi.org/10.1002/we.2026, 2017. 
Bond, T. and Anderson, D.: Manual of Scaling Methods, NASA Technical Report, NASA/CR-2004-212875, NASA document ID 20040042486, available at: https://ntrs.nasa.gov/citations/20040042486 (last access: May 2020), 2004. 
Botura, G., Sweet, D., and Flosdorf, D.: Development and Demonstration of Low Power Electrothermal De-icing System, Reno, NV: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-1460, https://doi.org/10.2514/6.2005-1460, 2005. 
Download
Short summary
A methodology to design electrothermal deicing protection for wind turbines is presented. The method relies on modeling and experimental testing to determine the critical ice thickness. The critical ice thickness needed is dependent on the ice tensile strength, which varies with icing conditions. The ice tensile strength must be overcome by the stress that a de-bonded ice structure exerts under centrifugal force at its root region, where it attaches to a non-de-bonded ice region.
Altmetrics
Final-revised paper
Preprint