Articles | Volume 6, issue 1
Wind Energ. Sci., 6, 149–157, 2021
https://doi.org/10.5194/wes-6-149-2021

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 6, 149–157, 2021
https://doi.org/10.5194/wes-6-149-2021

Research article 21 Jan 2021

Research article | 21 Jan 2021

Computational analysis of high-lift-generating airfoils for diffuser-augmented wind turbines

Aniruddha Deepak Paranjape et al.

Related subject area

Wind and turbulence
New methods to improve the vertical extrapolation of near-surface offshore wind speeds
Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
Wind Energ. Sci., 6, 935–948, https://doi.org/10.5194/wes-6-935-2021,https://doi.org/10.5194/wes-6-935-2021, 2021
Short summary
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021,https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary
A pressure-driven atmospheric boundary layer model satisfying Rossby and Reynolds number similarity
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021,https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer
Carlo Cossu
Wind Energ. Sci., 6, 663–675, https://doi.org/10.5194/wes-6-663-2021,https://doi.org/10.5194/wes-6-663-2021, 2021
Short summary

Cited articles

Alquraishi, B. A., Asmuin, N. Z., Mohd, S., Abd Al-Wahid, W. A., and Mohammed, A. N.: Review on Diffuser Augmented Wind Turbine (DAWT), International Journal of Integrated Engineering, 11, 178–206, https://doi.org/10.30880/ijie.2019.11.01.021, 2019.  a
Dighe, V., De Oliveira, G., Avallone, F., and Van Bussel, G.: Towards improving the aerodynamic performance of a ducted wind turbine: A numerical study, J. Phys. Conf. Ser., 1037, 022016, https://doi.org/10.1088/1742-6596/1037/2/022016, 2018a. a, b
Dighe, V. V., de Oliveira, G., Avallone, F., and Van Bussel, G.: On the effects of the shape of the duct for ducted wind turbines, in: 2018 Wind energy symposium, 8–12 January 2018, Kissimmee, Florida, USA, p. 0997, 2018b. a, b
Dighe, V., Suri, D., Avallone, F., and van Bussel, G.: Ducted wind turbines in yawed flow: A numerical study, Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-62, in review, 2019. a
El-Zahaby, A. M., Kabeel, A., Elsayed, S., and Obiaa, M.: CFD analysis of flow fields for shrouded wind turbine’s diffuser model with different flange angles, Alexandria Engineering Journal, 56, 171–179, 2017. a
Download
Short summary
This project is a comparative study that takes into consideration various airfoils from the Selig, NACA, and Eppler families and models them as diffusers of the wind turbine. The efficiency of the diffuser-augmented wind turbine can be enhanced by optimizing the geometry of the diffuser shape. Their subsequent performance trends were then analyzed, and the lower-performing airfoils were systematically eliminated to leave us with an optimum design.