Articles | Volume 8, issue 9
https://doi.org/10.5194/wes-8-1403-2023
https://doi.org/10.5194/wes-8-1403-2023
Research article
 | 
12 Sep 2023
Research article |  | 12 Sep 2023

Towards smart blades for vertical axis wind turbines: different airfoil shapes and tip speed ratios

Mohammad Rasoul Tirandaz, Abdolrahim Rezaeiha, and Daniel Micallef

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms
Bruno A. Roccia, Luis R. Ceballos, Marcos L. Verstraete, and Cristian G. Gebhardt
Wind Energ. Sci., 9, 385–416, https://doi.org/10.5194/wes-9-385-2024,https://doi.org/10.5194/wes-9-385-2024, 2024
Short summary
An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
Federico Taruffi, Felipe Novais, and Axelle Viré
Wind Energ. Sci., 9, 343–358, https://doi.org/10.5194/wes-9-343-2024,https://doi.org/10.5194/wes-9-343-2024, 2024
Short summary
Developing a digital twin framework for wind tunnel testing: validation of turbulent inflow and airfoil load applications
Rishabh Mishra, Emmanuel Guilmineau, Ingrid Neunaber, and Caroline Braud
Wind Energ. Sci., 9, 235–252, https://doi.org/10.5194/wes-9-235-2024,https://doi.org/10.5194/wes-9-235-2024, 2024
Short summary
Influence of rotor blade flexibility on the near-wake behavior of the NREL 5 MW wind turbine
Leo Höning, Laura J. Lukassen, Bernhard Stoevesandt, and Iván Herráez
Wind Energ. Sci., 9, 203–218, https://doi.org/10.5194/wes-9-203-2024,https://doi.org/10.5194/wes-9-203-2024, 2024
Short summary
Field-data-based validation of an aero-servo-elastic solver for high-fidelity large-eddy simulations of industrial wind turbines
Etienne Muller, Simone Gremmo, Félix Houtin-Mongrolle, Bastien Duboc, and Pierre Bénard
Wind Energ. Sci., 9, 25–48, https://doi.org/10.5194/wes-9-25-2024,https://doi.org/10.5194/wes-9-25-2024, 2024
Short summary

Cited articles

Ajaj, R. M., Parancheerivilakkathil, M. S., Amoozgar, M., Friswell, M. I., and Cantwell, W. J.: Recent developments in the aeroelasticity of morphing aircraft, Prog. Aerosp. Sci., 120, 100682, https://doi.org/10.1016/j.paerosci.2020.100682, 2021. 
Amet, E., Maitre, T., Pellone, C., and Achard, J.-L.: 2D Numerical simulations of blade-vortex interaction in a Darrieus turbine, J. Fluids Eng., 131, 1–15, https://doi.org/10.1115/1.4000258, 2009. 
Balduzzi, F., Bianchini, A., Ferrara, G., and Ferrari, L.: Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines, Energy, 97, 246–261, https://doi.org/10.1016/j.energy.2015.12.111, 2016a. 
Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., and Ferrari, L.: Critical issues in the CFD simulation of Darrieus wind turbines, Renew. Energy, 85, 419–435, https://doi.org/10.1016/j.renene.2015.06.048, 2016b. 
Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., and Inman, D. J.: A Review of Morphing Aircraft, J. Intel. Mater. Syst. Struct., 22, 823–877, https://doi.org/10.1177/1045389X11414084, 2011. 
Download
Short summary
Vertical axis wind turbines experience a variation of torque and power throughout their rotation. Traditional non-morphing blades are intrinsically not able to respond to this variation, resulting in a turbine which has suboptimal performance. In principle, it is possible to have a morphing blade that adapts to the blade's rotation and changes its geometry in such a way as to optimise the performance of the turbine. This paper addresses the question of how such blade should morph as it rotates.
Altmetrics
Final-revised paper
Preprint