Articles | Volume 8, issue 4
Research article
13 Apr 2023
Research article |  | 13 Apr 2023

From gigawatt to multi-gigawatt wind farms: wake effects, energy budgets and inertial gravity waves investigated by large-eddy simulations

Oliver Maas

Related authors

Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow – an LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems
Philipp Gasch, James Kasic, Oliver Maas, and Zhien Wang
Atmos. Meas. Tech., 16, 5495–5523,,, 2023
Short summary
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739,,, 2022
Short summary

Related subject area

Thematic area: Wind and the atmosphere | Topic: Wind and turbulence
TOSCA – an open-source, finite-volume, large-eddy simulation (LES) environment for wind farm flows
Sebastiano Stipa, Arjun Ajay, Dries Allaerts, and Joshua Brinkerhoff
Wind Energ. Sci., 9, 297–320,,, 2024
Short summary
Quantitative comparison of power production and power quality onshore and offshore: a case study from the eastern United States
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280,,, 2024
Short summary
The wind farm pressure field
Ronald B. Smith
Wind Energ. Sci., 9, 253–261,,, 2024
Short summary
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript under review for WES
Short summary
Realistic turbulent inflow conditions for estimating the performance of a floating wind turbine
Cédric Raibaudo, Jean-Christophe Gilloteaux, and Laurent Perret
Wind Energ. Sci., 8, 1711–1725,,, 2023
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms, Energies, 6, 2338–2361,, 2013. a
Abkar, M. and Porté-Agel, F.: Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition, Renew. Energ., 70, 142–152,, 2014. a, b, c
Allaerts, D. and Meyers, J.: Effect of Inversion-Layer Height and Coriolis Forces on Developing Wind-Farm Boundary Layers, in: 34th Wind Energy Symposium, American Institute of Aeronautics and Astronautics, Reston, Virginia, 1–5,, 2016. a, b, c, d
Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in conventionally neutral wind farms, J. Fluid Mech., 814, 95–130,, 2017. a, b, c, d, e, f, g, h, i, j, k, l
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299,, 2018. a
Short summary
The study compares small vs. large wind farms regarding the flow and power output with a turbulence-resolving simulation model. It shows that a large wind farm (90 km length) significantly affects the wind direction and that the wind speed is higher in the large wind farm wake. Both wind farms excite atmospheric gravity waves that also affect the power output of the wind farms.
Final-revised paper