Articles | Volume 9, issue 8
https://doi.org/10.5194/wes-9-1713-2024
https://doi.org/10.5194/wes-9-1713-2024
Research article
 | 
19 Aug 2024
Research article |  | 19 Aug 2024

On optimizing the sensor spacing for pressure measurements on wind turbine airfoils

Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown

Related authors

Experimental analysis of a horizontal-axis wind turbine with swept blades using PIV data
Erik Fritz, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1617–1629, https://doi.org/10.5194/wes-9-1617-2024,https://doi.org/10.5194/wes-9-1617-2024, 2024
Short summary
Aerodynamic characterisation of a thrust-scaled IEA 15 MW wind turbine model: experimental insights using PIV data
Erik Fritz, André Ribeiro, Koen Boorsma, and Carlos Ferreira
Wind Energ. Sci., 9, 1173–1187, https://doi.org/10.5194/wes-9-1173-2024,https://doi.org/10.5194/wes-9-1173-2024, 2024
Short summary

Related subject area

Thematic area: Fluid mechanics | Topic: Wind turbine aerodynamics
Drop-size-dependent effects in leading-edge rain erosion and their impact on erosion-safe mode operation
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 10, 315–346, https://doi.org/10.5194/wes-10-315-2025,https://doi.org/10.5194/wes-10-315-2025, 2025
Short summary
Characterization of dynamic stall of a wind turbine airfoil with a high Reynolds number
Hye Rim Kim, Jasson A. Printezis, Jan Dominik Ahrens, Joerg R. Seume, and Lars Wein
Wind Energ. Sci., 10, 161–175, https://doi.org/10.5194/wes-10-161-2025,https://doi.org/10.5194/wes-10-161-2025, 2025
Short summary
Numerical analysis of transonic flow over the FFA-W3-211 wind turbine tip airfoil
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci., 10, 103–116, https://doi.org/10.5194/wes-10-103-2025,https://doi.org/10.5194/wes-10-103-2025, 2025
Short summary
Characterization of vortex-shedding regimes and lock-in response of a wind turbine airfoil with two high-fidelity simulation approaches
Ricardo Fernandez-Aldama, George Papadakis, Oscar Lopez-Garcia, Sergio Avila-Sanchez, Vasilis A. Riziotis, Alvaro Cuerva-Tejero, and Cristobal Gallego-Castillo
Wind Energ. Sci., 10, 17–39, https://doi.org/10.5194/wes-10-17-2025,https://doi.org/10.5194/wes-10-17-2025, 2025
Short summary
Aerodynamic interaction of rain and wind turbine blades: the significance of droplet slowdown and deformation for leading-edge erosion
Nils Barfknecht and Dominic von Terzi
Wind Energ. Sci., 9, 2333–2357, https://doi.org/10.5194/wes-9-2333-2024,https://doi.org/10.5194/wes-9-2333-2024, 2024
Short summary

Cited articles

Bak, C., Madsen, H. A., Paulsen, U. S., Gaunaa, M., Sørensen, N. N., Fuglsang, P., Romblad, J., Olsen, N. A., Enevoldsen, P., Laursen, J., and Jensen, L.: DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine, in: European wind energy conference and exhibition (EWEC), 20–23, https://backend.orbit.dtu.dk/ws/portalfiles/portal/4552901/Bak_ewec_2010_paper.pdf (last access: 16 August 2024), 2010. a, b, c
Bak, C., Troldborg, N., and Madsen, H. A.: DAN-AERO MW: Measured airfoil characteristics for a MW rotor in atmospheric conditions, https://backend.orbit.dtu.dk/ws/portalfiles/portal/5500153/Bak_EWEA2011presentation.pdf (last access: 16 August 2024), 2011. a
Baldacchino, D., Ferreira, C., Tavernier, D. D., Timmer, W., and van Bussel, G. J. W.: Experimental parameter study for passive vortex generators on a 30 % thick airfoil, Wind Energy, 21, 745–765, https://doi.org/10.1002/we.2191, 2018. a
Balduzzi, F., Holst, D., Melani, P. F., Wegner, F., Nayeri, C. N., Ferrara, G., Paschereit, C. O., and Bianchini, A.: Combined Numerical and Experimental Study on the Use of Gurney Flaps for the Performance Enhancement of NACA0021 Airfoil in Static and Dynamic Conditions, J. Eng. Gas Turb. Power, 143, 021004, https://doi.org/10.1115/1.4048908, 2021. a
Barlow, J. B., Rae, W. H., and Pope, A.: Low-speed wind tunnel testing, John Wiley & Sons, ISBN 978-0-471-55774-6, 1999. a
Download
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Share
Altmetrics
Final-revised paper
Preprint