Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-377-2017
https://doi.org/10.5194/wes-2-377-2017
Research article
 | 
14 Jul 2017
Research article |  | 14 Jul 2017

The risks of extreme load extrapolation

Stefan F. van Eijk, René Bos, and Wim A. A. M. Bierbooms

Related authors

Segmented Gurney Flaps for Enhanced Wind Turbine Wake Recovery
Nirav Dangi, Koen Boorsma, Edwin Bot, Wim Bierbooms, and Wei Yu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-90,https://doi.org/10.5194/wes-2023-90, 2023
Preprint withdrawn
Short summary
Wind farm layout optimization using pseudo-gradients
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021,https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
Lidar uncertainty and beam averaging correction
A. Giyanani, W. Bierbooms, and G. van Bussel
Adv. Sci. Res., 12, 85–89, https://doi.org/10.5194/asr-12-85-2015,https://doi.org/10.5194/asr-12-85-2015, 2015

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Agarwal, P. and Manuel, L.: Simulation of offshore wind turbine response for long-term extreme load prediction, Eng. Struct., 31, 2236–2246, https://doi.org/10.1016/j.engstruct.2009.04.002, 2009.
Barone, M., Paquette, J., Resor, B., and Manuel, L.: Decades of wind turbine load simulation, 50th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., Nashville, TN, United States, 9–12 January 2012, https://doi.org/10.2514/6.2012-1288, 2012a.
Barone, M., Paquette, J., Resor, B., Manuel, L., and Nguyen, H.: Simulating the entire life of an offshore wind turbine, EWEA Annual Event, Copenhagen, Denmark, 16–19 April, 2012b.
Bos, R. and Veldkamp, H. F.: A method to find the 50-year extreme load during production, J. Phys. Conf. Ser., 753, 42021, https://doi.org/10.1088/1742-6596/753/4/042021, 2016.
Bos, R., Bierbooms, W. A. A. M., and van Bussel, G. J. W.: Importance sampling of severe wind gusts, 11th PhD Semin. Wind Energy Eur., Stuttgart, Germany, 23–25 September 2015.
Download
Short summary
Predicting the 50-year extreme loads for wind turbines requires a tremendous computational effort. Therefore, designers often have to extrapolate from relatively small data sets and have to settle for some degree of uncertainty. We investigated the impact of this uncertainty on practical design problems by drawing subsets from a 96-year load data set and using a crude Monte Carlo method to find the 50-year load. The results show that designers have to be careful with selecting sample sizes.
Altmetrics
Final-revised paper
Preprint