Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-491-2017
https://doi.org/10.5194/wes-2-491-2017
Research article
 | 
26 Oct 2017
Research article |  | 26 Oct 2017

Development of a comprehensive database of scattering environmental conditions and simulation constraints for offshore wind turbines

Clemens Hübler, Cristian Guillermo Gebhardt, and Raimund Rolfes

Related authors

Probabilistic temporal extrapolation of fatigue damage of offshore wind turbine substructures based on strain measurements
Clemens Hübler and Raimund Rolfes
Wind Energ. Sci., 7, 1919–1940, https://doi.org/10.5194/wes-7-1919-2022,https://doi.org/10.5194/wes-7-1919-2022, 2022
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Cheng, P. W.: A reliability based design methodology for extreme responses of offshore wind turbines, DUWIND Delft University Wind Energy Research Institute, the Netherlands, 2002.
Det Norske Veritas (DNV): Fatigue design of offshore steel structures, Recommended practice DNV-RP-C203, available at: https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-04/RP-C203.pdf (last access: October 2017), 2010.
Det Norske Veritas (DNV): Design of floating wind turbine structures, Offshore Standard DNV-OS-J103, available at: http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2013-06/OS-J103.pdf (last access: October 2017), 2013.
DIN – Normenausschuss Bauwesen: Subsoil – Verification of the safety of earthworks and foundations – Supplementary rules to DIN EN 1997-1, DIN 1054, available at: https://www-1perinorm-1com-100000boj285b.shan02.han.tib.eu/document.aspx (last access: October 2017), 2010.
Ernst, B. and Seume, J. R.: Investigation of site-specific wind field parameters and their effect on loads of offshore wind turbines, Energies, 5, 3835–3855, 2012.
Download
Short summary
For the design of offshore wind turbines, the knowledge of environmental conditions is important. However, real high-quality data are rare. This is why a comprehensive database of environmental conditions at wind turbine locations in the North and Baltic Sea is derived using real data. The main purpose of this work is to collect realistic data for probabilistic approaches. Hence, all results are freely available.
Altmetrics
Final-revised paper
Preprint