Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

CiteScore value: 0.6
CiteScore
0.6
h5-index value: 13
h5-index13
WES | Articles | Volume 3, issue 2
Wind Energ. Sci., 3, 533–543, 2018
https://doi.org/10.5194/wes-3-533-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 3, 533–543, 2018
https://doi.org/10.5194/wes-3-533-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Aug 2018

Research article | 16 Aug 2018

From standard wind measurements to spectral characterization: turbulence length scale and distribution

Mark Kelly

Related authors

Numerical modelling of the wind over forests: roughness versus canopy drag
Andrey Sogachev, Dalibor Cavar, Mark Kelly, Ebba Dellwik, Tobias Klaas, and Paul Kühn
Adv. Sci. Res., 17, 53–61, https://doi.org/10.5194/asr-17-53-2020,https://doi.org/10.5194/asr-17-53-2020, 2020
Short summary
Rossby number similarity of an atmospheric RANS model using limited-length-scale turbulence closures extended to unstable stratification
Maarten Paul van der Laan, Mark Kelly, Rogier Floors, and Alfredo Peña
Wind Energ. Sci., 5, 355–374, https://doi.org/10.5194/wes-5-355-2020,https://doi.org/10.5194/wes-5-355-2020, 2020
Short summary
Detection and characterization of extreme wind speed ramps
Ásta Hannesdóttir and Mark Kelly
Wind Energ. Sci., 4, 385–396, https://doi.org/10.5194/wes-4-385-2019,https://doi.org/10.5194/wes-4-385-2019, 2019
Short summary
Extreme wind fluctuations: joint statistics, extreme turbulence, and impact on wind turbine loads
Ásta Hannesdóttir, Mark Kelly, and Nikolay Dimitrov
Wind Energ. Sci., 4, 325–342, https://doi.org/10.5194/wes-4-325-2019,https://doi.org/10.5194/wes-4-325-2019, 2019
Short summary
Power curve and wake analyses of the Vestas multi-rotor demonstrator
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019,https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary

Related subject area

Wind and turbulence
Validation of uncertainty reduction by using multiple transfer locations for WRF–CFD coupling in numerical wind energy assessments
Rolf-Erik Keck and Niklas Sondell
Wind Energ. Sci., 5, 997–1005, https://doi.org/10.5194/wes-5-997-2020,https://doi.org/10.5194/wes-5-997-2020, 2020
Short summary
Decreasing wind speed extrapolation error via domain-specific feature extraction and selection
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020,https://doi.org/10.5194/wes-5-959-2020, 2020
Short summary
Dynamic wake meandering model calibration using nacelle-mounted lidar systems
Inga Reinwardt, Levin Schilling, Peter Dalhoff, Dirk Steudel, and Michael Breuer
Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020,https://doi.org/10.5194/wes-5-775-2020, 2020
Short summary
First characterization of a new perturbation system for gust generation: the chopper
Ingrid Neunaber and Caroline Braud
Wind Energ. Sci., 5, 759–773, https://doi.org/10.5194/wes-5-759-2020,https://doi.org/10.5194/wes-5-759-2020, 2020
Short summary
Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar
Felix Kelberlau and Jakob Mann
Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020,https://doi.org/10.5194/wes-5-519-2020, 2020
Short summary

Cited articles

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th printing, Dover, New York, 1972. a, b
Andre, J. C. and Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number, J. Fluid Mech., 81, 187–207, https://doi.org/10.1017/S0022112077001979, 1977. a
Berg, J., Vasiljevic, N., Kelly, M. C., Lea, G., and Courtney, M.: Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners, J. Atmos. Ocean. Tech., 32, 518–527, https://doi.org/10.1175/JTECH-D-14-00123.1, 2015. a
Caughey, S., Wyngaard, J. C., and Kaimal, J.: Turbulence in the evolving stable boundary-layer, J. Atmos. Sci., 36, 1041–1052, 1979. a, b, c, d, e
Chougule, A., Mann, J., Segalini, A., and Dellwik, E.: Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes, Wind Energy, 18, 469–481, 2015. a
Publications Copernicus
Download
Short summary
This paper shows how a definitive part of the commonly used Mann (1994) atmospheric turbulence model (its so-called eddy lifetime) implies that the model parameters can be directly related to typical measurements in wind energy projects. Most importantly, the characteristic turbulence length scale is found in terms of commonly measured (10 min mean) quantities (shear and standard deviation of wind speed); this estimator is found to give useful results, over different sites and flow regimes.
This paper shows how a definitive part of the commonly used Mann (1994) atmospheric turbulence...
Citation