Articles | Volume 3, issue 2
https://doi.org/10.5194/wes-3-805-2018
https://doi.org/10.5194/wes-3-805-2018
Research article
 | 
30 Oct 2018
Research article |  | 30 Oct 2018

Reducing the number of load cases for fatigue damage assessment of offshore wind turbine support structures using a simple severity-based sampling method

Lars Einar S. Stieng and Michael Muskulus

Related authors

Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
Lars Einar S. Stieng and Michael Muskulus
Wind Energ. Sci., 5, 171–198, https://doi.org/10.5194/wes-5-171-2020,https://doi.org/10.5194/wes-5-171-2020, 2020
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Effectively using multifidelity optimization for wind turbine design
John Jasa, Pietro Bortolotti, Daniel Zalkind, and Garrett Barter
Wind Energ. Sci., 7, 991–1006, https://doi.org/10.5194/wes-7-991-2022,https://doi.org/10.5194/wes-7-991-2022, 2022
Short summary
Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V. Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci., 7, 759–781, https://doi.org/10.5194/wes-7-759-2022,https://doi.org/10.5194/wes-7-759-2022, 2022
Short summary
Fast yaw optimization for wind plant wake steering using Boolean yaw angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022,https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
A simplified, efficient approach to hybrid wind and solar plant site optimization
Charles Tripp, Darice Guittet, Jennifer King, and Aaron Barker
Wind Energ. Sci., 7, 697–713, https://doi.org/10.5194/wes-7-697-2022,https://doi.org/10.5194/wes-7-697-2022, 2022
Short summary
Influence of wind turbine design parameters on linearized physics-based models in OpenFAST
Jason M. Jonkman, Emmanuel S. P. Branlard, and John P. Jasa
Wind Energ. Sci., 7, 559–571, https://doi.org/10.5194/wes-7-559-2022,https://doi.org/10.5194/wes-7-559-2022, 2022
Short summary

Cited articles

Chew, K.-H., Tai, K., Ng, E. Y. K., and Muskulus, M.: Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads, Mar. Struct., 47, 23–41, 2016. a
Det Norske Veritas: Design of Offshore Wind Turbine Structures, Offshore Standard, DNV-OS-J101, Det Norske Veritas AS: Høvik, Norway, 2016. a
DNV GL: Fatigue Design of Offshore Steel Structures, Recommended Practice, DNV-RP-C203, DNV GL AS: Høvik, Norway, 2016. a
Fedem Technology: Fedem User's Guide, release 7.2.1. Fedem Technology AS: Trondheim, Norway, 2016. a
Fischer, T., de Vries, W., and Schmidt, B.: Upwind Design Basis, Technical Report, Endowed Chair of Wind Energy (SWE) at the Institute of Aircraft Design, Stuttgart University, 2010. a
Download
Short summary
This study was done in order to simplify the analysis needed for the assessment of safety criteria that offshore wind turbine support structures must satisfy. The work was done via simulations of the system and computations and analyses of the resulting data. The results show that the proposed methodology has great potential for simplifying the assessment procedure while retaining acceptable accuracy compared to the full analysis. There are several applications within both research and industry.
Altmetrics
Final-revised paper
Preprint