Articles | Volume 5, issue 1
https://doi.org/10.5194/wes-5-199-2020
https://doi.org/10.5194/wes-5-199-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

The Power Curve Working Group's assessment of wind turbine power performance prediction methods

Joseph C. Y. Lee, Peter Stuart, Andrew Clifton, M. Jason Fields, Jordan Perr-Sauer, Lindy Williams, Lee Cameron, Taylor Geer, and Paul Housley

Related authors

An overview of wind-energy-production prediction bias, losses, and uncertainties
Joseph C. Y. Lee and M. Jason Fields
Wind Energ. Sci., 6, 311–365, https://doi.org/10.5194/wes-6-311-2021,https://doi.org/10.5194/wes-6-311-2021, 2021
Short summary
OpenOA: An Open-Source Code Base for Operational Analysis of Wind Power Plants
Mike Optis, Jordan Perr-Sauer, Caleb Philips, Anna E. Craig, Joseph C. Y. Lee, Travis Kemper, Shuangwen Sheng, Eric Simley, Lindy Williams, Monte Lunacek, John Meissner, and M. Jason Fields
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-12,https://doi.org/10.5194/wes-2019-12, 2019
Preprint withdrawn
Short summary
Assessing variability of wind speed: comparison and validation of 27 methodologies
Joseph C. Y. Lee, M. Jason Fields, and Julie K. Lundquist
Wind Energ. Sci., 3, 845–868, https://doi.org/10.5194/wes-3-845-2018,https://doi.org/10.5194/wes-3-845-2018, 2018
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Bardal, L. M. and Sætran, L. R.: Influence of turbulence intensity on wind turbine power curves, in: Energy Procedia, vol. 137, 553–558, Elsevier, 2017. 
Bardal, L. M., Sætran, L. R., and Wangsness, E.: Performance Test of a 3MW Wind Turbine – Effects of Shear and Turbulence, Energy Proced., 80, 83–91, https://doi.org/10.1016/J.EGYPRO.2015.11.410, 2015. 
Bessa, R. J., Miranda, V., Botterud, A., Wang, J., and Constantinescu, E. M.: Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting, IEEE T. Sustain. Energ., 3, 660–669, https://doi.org/10.1109/TSTE.2012.2200302, 2012. 
Brown, M. B. and Forsythe, A. B.: Robust Tests for the Equality of Variances, J. Am. Stat. Assoc., 69, 364–367, https://doi.org/10.1080/01621459.1974.10482955, 1974. 
Bulaevskaya, V., Wharton, S., Clifton, A., Qualley, G., and Miller, W. O.: Wind power curve modeling in complex terrain using statistical models, J. Renew. Sustain. Energ., 7, 013103, https://doi.org/10.1063/1.4904430, 2015. 
Download
Short summary
This work summarizes the results of the intelligence-sharing initiative of the Power Curve Working Group. Participants in this share exercise applied a handful of selected power curve modeling correction methods on their power performance test data, and they submitted the results for the coauthors to analyze. In this paper, we describe the share exercise, explain the analysis methodologies, and perform statistical tests to evaluate the correction methods in various inflow conditions.
Altmetrics
Final-revised paper
Preprint