Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 0.6 CiteScore
    0.6
  • h5-index value: 13 h5-index 13
WES | Articles | Volume 5, issue 2
Wind Energ. Sci., 5, 489–501, 2020
https://doi.org/10.5194/wes-5-489-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Wind Energ. Sci., 5, 489–501, 2020
https://doi.org/10.5194/wes-5-489-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Apr 2020

Research article | 17 Apr 2020

The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds

Nicola Bodini and Mike Optis

Related authors

Can machine learning improve the model representation of TKE dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-16,https://doi.org/10.5194/gmd-2020-16, 2020
Revised manuscript accepted for GMD
Short summary
Are Uncertainty Categories in a Wind Farm Annual Energy Production Estimate Actually Uncorrelated?
Nicola Bodini and Mike Optis
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-82,https://doi.org/10.5194/wes-2019-82, 2019
Revised manuscript under review for WES
Short summary

Related subject area

Wind and turbulence
Decreasing wind speed extrapolation error via domain-specific feature extraction and selection
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020,https://doi.org/10.5194/wes-5-959-2020, 2020
Short summary
Dynamic wake meandering model calibration using nacelle-mounted lidar systems
Inga Reinwardt, Levin Schilling, Peter Dalhoff, Dirk Steudel, and Michael Breuer
Wind Energ. Sci., 5, 775–792, https://doi.org/10.5194/wes-5-775-2020,https://doi.org/10.5194/wes-5-775-2020, 2020
Short summary
First characterization of a new perturbation system for gust generation: the chopper
Ingrid Neunaber and Caroline Braud
Wind Energ. Sci., 5, 759–773, https://doi.org/10.5194/wes-5-759-2020,https://doi.org/10.5194/wes-5-759-2020, 2020
Short summary
Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar
Felix Kelberlau and Jakob Mann
Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020,https://doi.org/10.5194/wes-5-519-2020, 2020
Short summary
Exploring the complexities associated with full-scale wind plant wake mitigation control experiments
James B. Duncan Jr., Brian D. Hirth, and John L. Schroeder
Wind Energ. Sci., 5, 469–488, https://doi.org/10.5194/wes-5-469-2020,https://doi.org/10.5194/wes-5-469-2020, 2020
Short summary

Cited articles

Babić, K., Bencetić Klaić, Z., and Večenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012. a
Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.: Extrapolating Satellite Winds to Turbine Operating Heights, J. Appl. Meteorol. Clim., 55, 975–991, https://doi.org/10.1175/JAMC-D-15-0197.1, 2016. a
Barthelmie, R., Grisogono, B., and Pryor, S.: Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea, J. Geophys. Res.-Atmos., 101, 21327–21337, 1996. a
Beljaars, A. and Holtslag, A.: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, 1991. a
Biraud, S., Billesbach, D., and Chan, S.: Carbon Dioxide Flux Measurement Systems (30CO2FLX4M), Atmospheric Radiation Measurement (ARM) user facility, https://doi.org/10.5439/1025036, 2017–2019. a
Publications Copernicus
Download
Short summary
An accurate assessment of the wind resource at hub height is necessary for an efficient and bankable wind farm project. Conventional techniques for wind speed vertical extrapolation include a power law and a logarithmic law. Here, we propose a round-robin validation to assess the benefits that a machine-learning-based approach can provide in vertically extrapolating wind speed at a location different from the training site – the most practically useful application for the wind energy industry.
An accurate assessment of the wind resource at hub height is necessary for an efficient and...
Citation