Articles | Volume 5, issue 3
https://doi.org/10.5194/wes-5-959-2020
https://doi.org/10.5194/wes-5-959-2020
Research article
 | 
26 Jul 2020
Research article |  | 26 Jul 2020

Decreasing wind speed extrapolation error via domain-specific feature extraction and selection

Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando

Related authors

Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Daniel Vassallo, Raghavendra Krishnamurthy, and Harindra J. S. Fernando
Wind Energ. Sci., 6, 295–309, https://doi.org/10.5194/wes-6-295-2021,https://doi.org/10.5194/wes-6-295-2021, 2021
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Aggarwal, C. C.: Neural networks and deep learning, Springer, Cham, Switzerland, 2018. a, b
Akish, E., Bianco, L., Djalalova, I. V., Wilczak, J. M., Olson, J. B., Freedman, J., Finley, C., and Cline, J.: Measuring the impact of additional instrumentation on the skill of numerical weather prediction models at forecasting wind ramp events during the first Wind Forecast Improvement Project (WFIP), Wind Energy, 22, 1165–1174, 2019. a
A2e – Atmosphere to Electrons: wfip2/lidar.z03.00, Maintained by A2e Data Archive and Portal for US Department of Energy, Office of Energy Efficiency and Renewable Energy, https://doi.org/10.21947/1328914, 2017. a
Baklanov, A. A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S. S., Taylor, P., Larsen, S. E., Rotach, M. W., and Fernando, H.: The nature, theory, and modeling of atmospheric planetary boundary layers, B. Am. Meteorol. Soc., 92, 123–128, 2011. a
Download
Short summary
Model error and uncertainty is a challenge in the wind energy industry, potentially leading to mischaracterization of millions of dollars' worth of wind resource. This paper combines meteorological knowledge with machine learning techniques, specifically artificial neural networks (ANNs), to better extrapolate wind speeds. It is found that ANNs can reduce power-law extrapolation error by up to 52 % while simultaneously reducing uncertainty. A test case is shown to help decipher the ANN results.
Altmetrics
Final-revised paper
Preprint