Articles | Volume 6, issue 1
https://doi.org/10.5194/wes-6-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-6-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Utilizing physics-based input features within a machine learning model to predict wind speed forecasting error
Daniel Vassallo
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
Raghavendra Krishnamurthy
Pacific Northwest National Laboratory, Washington, USA
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
Harindra J. S. Fernando
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
Related authors
No articles found.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth N. Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, William Radünz, and Patrick Moriarty
Wind Energ. Sci., 10, 1681–1705, https://doi.org/10.5194/wes-10-1681-2025, https://doi.org/10.5194/wes-10-1681-2025, 2025
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Jungmin Lee, Virendra P. Ghate, Arka Mitra, Lee M. Miller, Raghavendra Krishnamurthy, and Ulrike Egerer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-108, https://doi.org/10.5194/wes-2025-108, 2025
Preprint under review for WES
Short summary
Short summary
This study compares weather model predictions to real-world measurements of wind and clouds off California's coast, where offshore wind farms are planned. It finds the model often underestimates wind speeds in cloudy conditions and shows larger errors in clear skies. These results highlight when and where the model is most accurate, helping improve wind forecasts and support better planning for offshore wind energy projects.
Macy Frost Chang, Raghavendra Krishnamurthy, and Fotini Katopodes Chow
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-85, https://doi.org/10.5194/wes-2025-85, 2025
Preprint under review for WES
Short summary
Short summary
The development of offshore wind energy sites hinges on accurate prediction of hub-height wind speeds. This paper compares three machine learning (ML) algorithms to a standard log-law wind extrapolation at two offshore buoy sites. The ML methods demonstrate new capabilities for providing accurate and adaptable predictions of offshore wind characteristics in comparison to conventional approaches. These ML techniques can help inform the development of offshore wind energy projects.
Adam S. Wise, Robert S. Arthur, Aliza Abraham, Sonia Wharton, Raghavendra Krishnamurthy, Rob Newsom, Brian Hirth, John Schroeder, Patrick Moriarty, and Fotini K. Chow
Wind Energ. Sci., 10, 1007–1032, https://doi.org/10.5194/wes-10-1007-2025, https://doi.org/10.5194/wes-10-1007-2025, 2025
Short summary
Short summary
Wind farms can be subject to rapidly changing weather events. In the United States Great Plains, some of these weather events can result in waves in the atmosphere that ultimately affect how much power a wind farm can produce. We modeled a specific event of waves observed in Oklahoma. We determined how to accurately model the event and analyzed how it affected a wind farm’s power production, finding that the waves both decreased power and made it more variable.
Arka Mitra, Virendra Ghate, and Raghavendra Krishnamurthy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-55, https://doi.org/10.5194/wes-2025-55, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study introduces a new metric to quantify the spatiotemporal variability of wind resources and a novel numerical technique to locate the optimal wind resource within a large wind farm. The new metric and the novel optimization technique are applied to assist in the pre-construction wind resource assessments of two Californian offshore wind energy areas. This optimization is stable for a diverse choice of wind turbines and is easily scalable and adaptable to any other offshore location.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025, https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich
Wind Energ. Sci., 8, 433–448, https://doi.org/10.5194/wes-8-433-2023, https://doi.org/10.5194/wes-8-433-2023, 2023
Short summary
Short summary
Turbulence intensity is critical for wind turbine design and operation as it affects wind power generation efficiency. Turbulence measurements in the marine environment are limited. We use a model to derive turbulence intensity and test how sea surface temperature data may impact the simulated turbulence intensity and atmospheric stability. The model slightly underestimates turbulence, and improved sea surface temperature data reduce the bias. Error with unrealistic mesoscale flow is identified.
Lindsay M. Sheridan, Raghu Krishnamurthy, Gabriel García Medina, Brian J. Gaudet, William I. Gustafson Jr., Alicia M. Mahon, William J. Shaw, Rob K. Newsom, Mikhail Pekour, and Zhaoqing Yang
Wind Energ. Sci., 7, 2059–2084, https://doi.org/10.5194/wes-7-2059-2022, https://doi.org/10.5194/wes-7-2059-2022, 2022
Short summary
Short summary
Using observations from lidar buoys, five reanalysis and analysis models that support the wind energy community are validated offshore and at rotor-level heights along the California Pacific coast. The models are found to underestimate the observed wind resource. Occasions of large model error occur in conjunction with stable atmospheric conditions, wind speeds associated with peak turbine power production, and mischaracterization of the diurnal wind speed cycle in summer months.
Raghavendra Krishnamurthy, Rob K. Newsom, Larry K. Berg, Heng Xiao, Po-Lun Ma, and David D. Turner
Atmos. Meas. Tech., 14, 4403–4424, https://doi.org/10.5194/amt-14-4403-2021, https://doi.org/10.5194/amt-14-4403-2021, 2021
Short summary
Short summary
Planetary boundary layer (PBL) height is a critical parameter in atmospheric models. Continuous PBL height measurements from remote sensing measurements are important to understand various boundary layer mechanisms, especially during daytime and evening transition periods. Due to several limitations in existing methodologies to detect PBL height from a Doppler lidar, in this study, a machine learning (ML) approach is tested. The ML model is observed to improve the accuracy by over 50 %.
Cited articles
Akish, E., Bianco, L., Djalalova, I. V., Wilczak, J. M., Olson, J. B.,
Freedman, J., Finley, C., and Cline, J.: Measuring the impact of additional
instrumentation on the skill of numerical weather prediction models at
forecasting wind ramp events during the first Wind Forecast Improvement
Project (WFIP), Wind Energy, 22.9, 1165–1174, 2019. a
Bianco, L., Djalalova, I. V., Wilczak, J. M., Olson, J. B., Kenyon, J. S., Choukulkar, A., Berg, L. K., Fernando, H. J. S., Grimit, E. P., Krishnamurthy, R., Lundquist, J. K., Muradyan, P., Pekour, M., Pichugina, Y., Stoelinga, M. T., and Turner, D. D.: Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2), Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019, 2019. a
Bodini, N., Lundquist, J. K., and Optis, M.: Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?, Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020, 2020. a, b
Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.: Time series
analysis: forecasting and control, John Wiley & Sons, Hoboken, NJ, 2015. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Cadenas, E. and Rivera, W.: Wind speed forecasting in three different regions
of Mexico, using a hybrid ARIMA–ANN model, Renew. Energy, 35, 2732–2738,
2010. a
Cadenas, E., Rivera, W., Campos-Amezcua, R., and Heard, C.: Wind speed
prediction using a univariate ARIMA model and a multivariate NARX model,
Energies, 9, 109, https://doi.org/10.3390/en9020109, 2016. a
Cermak, J. and Horn, J.: Tower shadow effect, J. Geophys. Res., 73, 1869–1876, 1968. a
Chen, Y., Zhang, S., Zhang, W., Peng, J., and Cai, Y.: Multifactor
spatio-temporal correlation model based on a combination of convolutional
neural network and long short-term memory neural network for wind speed
forecasting, Energ. Convers. Manage., 185, 783–799, 2019. a
Dickey, D. A. and Fuller, W. A.: Distribution of the estimators for
autoregressive time series with a unit root, J. Am. Stat. Assoc., 74, 427–431, 1979. a
Dupré, A., Drobinski, P., Alonzo, B., Badosa, J., Briard, C., and
Plougonven, R.: Sub-hourly forecasting of wind speed and wind energy,
Renew. Energy, 145, 2373–2379, 2019. a
Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch, S. W., Hacker, J., Pace, J. C., Pratt, T., Pu, Z., Steenburgh, W. J., Whiteman, C. D., Wang, Y., Zajic, D., Balsley, B., Dimitrova, R., Emmitt, G. D., Higgins, C. W., Hunt, J. C. R., Knievel, J. C., Lawrence, D., Liu, Y., Nadeau, D. F., Kit, E., Blomquist, B. W., Conry, P., Coppersmith, R. S., Creegan, E., Felton, M., Grachev, A., Gunawardena, N., Hang, C., Hocut, C. M., Huynh, G., Jeglum, M. E., Jensen, D., Kulandaivelu, V., Lehner, M., Leo, L. S., Liberzon, D., Massey, J. D., McEnerney, K., Pal, S., Price, T., Sghiatti, M., Silver, Z., Thompson, M., Zhang, H., and Zsedrovits, T.: The MATERHORN: Unraveling the intricacies of mountain weather, B. Am. Meteorol. Soc., 96, 1945–1967, 2015. a
Fernando, H. J. S., Mann, J., Palma, J. M. L. M., Lundquist, J. K., Barthelmie, R. J., Belo-Pereira, M., Brown, W. O. J., Chow, F. K., Gerz, T., Hocut, C. M., Klein, P. M., Leo, L. S., Matos, J. C., Oncley, S. P., Pryor, S. C., Bariteau, L., Bell, T. M., Bodini, N., Carney, M. B., Courtney, M. S., Creegan, E. D., Dimitrova, R., Gomes, S., Hagen, M., Hyde, J. O., Kigle, S., Krishnamurthy, R., Lopes, J. C., Mazzaro, L., Neher, J. M. T., Menke, R., Murphy, P., Oswald, L., Otarola-Bustos, S., Pattantyus, A. K., Viega Rodrigues, C., Schady, A., Sirin, N., Spuler, S., Svensson, E., Tomaszewski, J., Turner, D. D., van Veen, L., Vasiljević, N., Vassallo, D., Voss, S., Wildmann, N., and Wang, Y.: The Perdigao: Peering into microscale details of mountain winds, B. Am. Meteorol. Soc., 100, 799–819, 2019. a, b, c, d, e, f, g
GWEC: Global Wind Report 2018, available at:
https://gwec.net/wp-content/uploads/2019/04/GWEC-Global-Wind-Report-2018.pdf
(last access: 10 February 2020), 2019. a
Haupt, S. E., Mahoney, W. P., and Parks, K.: Wind power forecasting, in:
Weather Matters for Energy, Springer, New York, NY, 295–318, 2014. a
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their
structure and measurement, Oxford University Press, Oxford, 1994. a
Kronebach, G. W.: An automated procedure for forecasting clear-air turbulence, J. Appl. Meteorol., 3, 119–125, 1964. a
Ku, H. H.: Notes on the use of propagation of error formulas, J. Res. Natl. Bureau Stand., 70, 263–273, 1966. a
Lange, M.: On the uncertainty of wind power predictions – Analysis of the
forecast accuracy and statistical distribution of errors, J. Sol. Energ. Eng., 127, 177–184, 2005. a
Lazarevska, E.: Wind Speed Prediction based on Incremental Extreme Learning
Machine, in: Proceedings of The 9th EUROSIM Congress on Modelling and
Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and
Modelling SIMS 2016, 142, Linköping University Electronic Press,
Linköping, Sweden, 544–550, 2018. a
Lozovatsky, I. and Fernando, H.: Mixing efficiency in natural flows,
Philos. T. Roy. Soc. A, 371, 20120213, https://doi.org/10.1098/rsta.2012.0213, 2013. a
Lubitz, W. D. and Michalak, A.: Experimental and theoretical investigation of
tower shadow impacts on anemometer measurements, J. Wind Eng. Indust. Aerodynam., 176, 112–119, 2018. a
McCaffrey, K., Quelet, P. T., Choukulkar, A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., Brewer, W. A., Debnath, M., Ashton, R., Iungo, G. V., and Lundquist, J. K.: Identification of tower-wake distortions using sonic anemometer and lidar measurements, Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, 2017. a
Mellit, A.: Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review, Int. J. Artific. Intel. Soft Comput., 1, 52–76, 2008. a
Mohandes, M. A., Halawani, T. O., Rehman, S., and Hussain, A. A.: Support
vector machines for wind speed prediction, Renew. Energy, 29, 939–947, 2004. a
Morf, H.: Sunshine and cloud cover prediction based on Markov processes, Solar Energy, 110, 615–626, 2014. a
Moses, H. and Daubek, H. G.: Errors in wind measurements associated with
tower-mounted anemometers, B. Am. Meteorol. Soc., 42, 190–194, 1961. a
NCAR/UCAR: NCAR/EOL Quality Controled 5-minute ISFS surface flux data,
geographic coordinate, tilt corrected, version 1.1, UCAR/NCAR – Earth
Observing Laboratory, Boulder, CO, https://doi.org/10.26023/ZDMJ-D1TY-FG14, 2019. a
Olson, J., Kenyon, J. S., Djalalova, I., Bianco, L., Turner, D. D., Pichugina, Y., Choukulkar, A., Toy, M. D., Brown, J. M., Angevine, W. M., Akish, E., Bao, J. W., Jimenez, P., Kosovic, B., Lundquist, K. A., Draxl, C., Lundquist, J. K., McCaa, J., McCaffrey, K., Lantz, K., Long, C., Wilczak, J., Banta, R., Marquis, M., Redfern, S., Berg, L. K., Shaw, W., and Cline, J.: Improving wind energy forecasting through numerical weather prediction model development, B. Am. Meteorol. Soc., 100, 2201–2220, 2019. a
Optis, M. and Perr-Sauer, J.: The importance of atmospheric turbulence and
stability in machine-learning models of wind farm power production, Renew.
Sustain. Energ. Rev., 112, 27–41, 2019. a
Orlando, S., Bale, A., and Johnson, D. A.: Experimental study of the effect of tower shadow on anemometer readings, J. Wind Eng. Indust. Aerodynam., 99, 1–6, 2011. a
Papadopoulos, K., Helmis, C., and Amanatidis, G.: An analysis of wind direction and horizontal wind component fluctuations over complex terrain, J.
Appl. Meteorol., 31, 1033–1040, 1992. a
Pedregosa, F., Varoquaux, G., Gramfort, A.,Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Ramasamy, P., Chandel, S., and Yadav, A. K.: Wind speed prediction in the
mountainous region of India using an artificial neural network model,
Renew. Energy, 80, 338–347, 2015. a
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical modeling with python, in: vol. 57, Proceedings of the 9th Python in Science Conference, Austin, TX, p. 61, 2010. a
Shibata, R.: Selection of the order of an autoregressive model by Akaike's
information criterion, Biometrika, 63, 117–126, 1976. a
Soman, S. S., Zareipour, H., Malik, O., and Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons, in: IEEE North American Power Symposium 2010, 26–28 September 2010, Arlington, TX, 1–8, 2010. a
Stiperski, I., Calaf, M., and Rotach, M. W.: Scaling, Anisotropy, and Complexity in Near-Surface Atmospheric Turbulence, J. Geophys. Res.-Atmos., 124, 1428–1448, 2019. a
UCAR/NCAR Earth Observing Laboratory: Perdigão Field Experiment Data, available at: https://data.eol.ucar.edu/project/Perdigao, last access: 10 January 2019. a
Vassallo, D., Krishnamurthy, R., and Fernando, H. J. S.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection, Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020, 2020. a
Wang, F., Mi, Z., Su, S., and Zhao, H.: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters, Energies, 5, 1355–1370, 2012. a
Wu, W., Zhang, B., Chen, J., and Zhen, T.: Multiple time-scale coordinated
power control system to accommodate significant wind power penetration and
its real application, in: 2012 IEEE Power and Energy Society General Meeting,
22–26 July 2012, San Diego, CA, 1–6, 2012. a
Yang, D., Jirutitijaroen, P., and Walsh, W. M.: Hourly solar irradiance time
series forecasting using cloud cover index, Solar Energy, 86, 3531–3543,
2012. a
Yang, Q., Berg, L. K., Pekour, M., Fast, J. D., Newsom, R. K., Stoelinga, M.,
and Finley, C.: Evaluation of WRF-predicted near-hub-height winds and ramp
events over a Pacific Northwest site with complex terrain, J. Appl. Meteorol. Clim., 52, 1753–1763, 2013. a
Short summary
Machine learning is quickly becoming a commonly used technique for wind speed and power forecasting and is especially useful when combined with other forecasting techniques. This study utilizes a popular machine learning algorithm, random forest, in an attempt to predict the forecasting error of a statistical forecasting model. Various atmospheric characteristics are used as random forest inputs in an effort to discern the most useful atmospheric information for this purpose.
Machine learning is quickly becoming a commonly used technique for wind speed and power...
Altmetrics
Final-revised paper
Preprint